Epidemiology of *Pseudomonas aeruginosa* and Its Resistance in Cameroon: Systematic Review and Meta-Analysis

Yves Le Grand Napa Tchuedji¹, Hortense Gonsu Kamga²,3, Emilia Lyonga Mbamyah², Anicette Chafa Betbeui³, François-Xavier Etoa¹ and Yap BoumII⁴,5

¹Department of Microbiology, Laboratory of Microbiology, University of Yaoundé I, Yaoundé, Cameroon.
²Department of Microbiology, Parasitology, Haematology and Infectious Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
³Laboratory of Bacteriology, University Teaching Hospital, Yaounde, Cameroon.
⁴Epicenter Africa Research Centre, Yaoundé, Cameroon

Accepted 10 November, 2020

Background: *Pseudomonas aeruginosa* is a non-fermentative bacteria which present a rapid increase in the rates of infections across the world. *Pseudomonas aeruginosa* ranks third among the resistant bacteria responsible for nosocomial infections. **Aim:** To assess the distribution and evolution of resistance of *Pseudomonas aeruginosa* in Cameroon. **Methods:** We carried out a systematic review of the research publications that determined the resistance phenotypes of *Pseudomonas aeruginosa* in Cameroon. A meta-analysis of the data was carried out to synthesize the data on resistance phenotypes, their distribution and their evolution in Cameroon. **Results:** A considerable increase in resistance to ceftriaxone, aztreonam, gentamycin and tobramycin between 2005 and 2011 was observed. In addition, an increase in resistance to imipenem was noted between 2011 and 2013. The city of Douala has a high frequency of *Pseudomonas aeruginosa* followed by Buea and Yaounde. **Conclusion:** *Pseudomonas aeruginosa* has a high frequency and resistance to several antibiotics in Cameroon. There is a need to continue surveillance in several hospitals and in several regions of Cameroon in order to implement policies and measures to fight infections and antibiotic resistance.

Keywords: *Pseudomonas aeruginosa*, resistance, antibiotics, epidemiology, clinical isolates.

INTRODUCTION

Antibiotic resistance is one of the priority problems around the world. It is a problem which affects the evolution of infectious diseases by increasing virulence. This limits effective care and leads to an increase in hospital stay and the time taken to care for patients. This situation is still very worrying in Africa, where several factors contribute to the emergence and transmission of resistant strains. The threat posed by these resistant bacteria is however

Corresponding Author’s Email: tchuedji@yahoo.fr
The multidrug resistance of Pseudomonas aeruginosa ranks third among the bacteria responsible for nosocomial infections. It is a Gram negative non-fermentative bacteria. Studies by Cholley et al., (2010) have shown an increase in the multidrug resistance of P. aeruginosa to almost all antibiotics except colistin. Rapid increases in the rates of infections due to metallo-beta-lactamase-producing P. aeruginosa have been reported across the world (Perovic et al., 2016; Rajagunalan et al., 2013). Although Pseudomonas aeruginosa is regularly isolated from patients with urinary tract infections, sepsis, injuries, and several factors associated with increased resistance observed in Cameroon, most hospitals do not monitor for epidemiology of resistance.

The aim of this work was to give the prevalence of Pseudomonas aeruginosa and to assess the evolution of its resistance in Cameroon. To achieve this aim, a meta-analysis of some articles was conducted.

METHODS

This systematic review was designed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guideline (Moher et al., 2009). We conducted an exhaustive search of available literature via PubMed and Web of Sciences starting from the date of inception of each database until January 2020 and identified the evidence from descriptive prospective study investigating the evolution to antibiotic of clinical isolate of Pseudomonas aeruginosa in Cameroon. We used a controlled vocabulary during the research. These terms included words such as Pseudomonas aeruginosa, antibiotics, resistance and Cameroon and the following published and validated filter was applied. The research was carried out in English and French.

Data extraction

We synthesized the results of six articles and compared these results to assess the evolution of resistance of Pseudomonas aeruginosa in Cameroon from the articles. When the results presented only the sensitivity profile, the frequency of resistance to each antibiotic evaluated was determined by subtracting the percentage of sensitive isolates.

An evaluation of the frequency of Pseudomonas aeruginosa per city was also carried out by comparing the data of the different articles selected.

Inclusion criteria

The inclusion criteria used to select the articles were: original research, Studies conducted in Cameroon, antimicrobial susceptibility testing, clinical isolates of Pseudomonas aeruginosa, papers published in French or English. Overall, we retained six articles.

Exclusion criteria

The papers which do not allow us determine the frequency of resistance of Pseudomonas aeruginosa to antibiotics.

Data analysis methods

The graphs showing the increase in resistance of Pseudomonas aeruginosa were generated using excel software using the resistance frequencies from the selected articles.

Ethical consideration

Ethical clearance was not necessary for this study

RESULTS

Synthesis of data on the resistance of Pseudomonas aeruginosa to antibiotics

The data on the resistance of Pseudomonas aeruginosa to the various antibiotics studied in the selected articles are shown in Table 1.

Table 1 summarizes the data of authors on the resistance of Pseudomonas aeruginosa to cefotaxime, ceftazidime, aztreonam, imipenem, gentamycin, tobramycin and piperacillin. It appears from this table that the resistance of Pseudomonas aeruginosa to cefotaxime and to tobramycin was constant between 1998 and 2005. The work of Gangoue-Pieboji et al., (2006) revealed frequencies of 98% and 44% respectively for cefotaxime and tobramycin. Seven years later, the frequency of resistance was 97% and 43.24% for cefotaxime and tobramycin respectively. During this same period, resistance decreased from 28% to 18.9% for ceftazidime and then from 67% to 32.43% for aztreonam. However, a significant increase in resistance to ceftazidime,
Table I: Summary of data on the frequency of resistance of *Pseudomonas aeruginosa* isolates to antibiotics.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Number of isolate</th>
<th>Cefotaxime</th>
<th>Ceftazidime</th>
<th>Aztreonam</th>
<th>Imipenem</th>
<th>Gentamicin</th>
<th>Tobramycin</th>
<th>Piperacillin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gangoue-Pieboji et al. (2006)</td>
<td>67</td>
<td>98%</td>
<td>28%</td>
<td>67%</td>
<td>6%</td>
<td>51%</td>
<td>44%</td>
<td>54%</td>
</tr>
<tr>
<td>Ndip et al. (2005)</td>
<td>37</td>
<td>97%</td>
<td>18.9%</td>
<td>32.43%</td>
<td>/</td>
<td>64.86%</td>
<td>43.24%</td>
<td>/</td>
</tr>
<tr>
<td>Clotilde et al. (2013)</td>
<td>2</td>
<td>/</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Ebongue et al. (2014)</td>
<td>/</td>
<td>/</td>
<td>30.4%</td>
<td>/</td>
<td>9.5%</td>
<td>/</td>
<td>/</td>
<td>28.5%</td>
</tr>
<tr>
<td>Ateba et al. (2013)</td>
<td>49</td>
<td>/</td>
<td>47.4%</td>
<td>/</td>
<td>67%</td>
<td>59.1%</td>
<td>49%</td>
<td>/</td>
</tr>
<tr>
<td>Gonsu et al. (2015)</td>
<td>34</td>
<td>/</td>
<td>5.9%</td>
<td>0%</td>
<td>5.9%</td>
<td>5.9%</td>
<td>5.9%</td>
<td>23.5%</td>
</tr>
</tbody>
</table>

NB: Not evaluated (/)

![Figure 1: Increased resistance of *Pseudomonas aeruginosa* to antibiotics](image)

aztreonam, gentamycin and tobramycin between 2005 and 2013 has been reported. In addition, an increase in resistance to imipenem was noted between 2011 and 2013. On the other hand, a considerable decrease in resistance to all antibiotics was noted in 2015. Figure 1 shows the increased resistance of *Pseudomonas aeruginosa* to antibiotics. It appears in this figure that *P. aeruginosa* have increased resistance by 13.86% to gentamicin between 1998 and 2005. Furthermore, an increase in resistance of 35.14%, 56.76%, 67.57% and 81.1% was found with respect to gentamicin, tobramycin, aztreonam and ceftazidime respectively between 2005 and 2011.

Regarding the distribution of *Pseudomonas aeruginosa* in Cameroon, the studies carried out in Douala, Yaounde and Buea to determine the resistance phenotypes showed that the frequency of *Pseudomonas aeruginosa* is highest in the city of Douala followed by Buea and Yaounde with respective frequencies of 32.66%, 25.5% and 13.26%.

DISCUSSION

Pseudomonas aeruginosa is a bacteria that adapts to different environments and is involved in several nosocomial infections. The complexity and variability of its genome partly explains the frequency of resistance to
antibiotics. The work carried out in Cameroon revealed a considerable increase in the resistance of *Pseudomonas aeruginosa* to gentamycin, tobramycin, aztreonam and ceftazidime between 2005 and 2011 with an optimum of 81.1%. This increase in resistance is also noticeable between 2013 and 2015 with an optimum of 67%. Studies carried out in the city of Douala have revealed the highest frequencies of resistance (Eborgue et al., 2011; Clotilde et al., 2013; Ndip et al., 2005). The city of Douala represents the economic capital of Cameroon where the majority of commercial and industrial activities are carried out. This has led to overcrowding of the city, unsanitary environment and non-observance of hygiene measure. Many of the inhabitants also use street antibiotics. Other studies have revealed the impact of these factors on the increase in resistance and the spread of resistant bacteria in the population (Amvene et al., 2013).

The study carried out in Yaounde by Gonsu et al. (2015) showed low frequencies of antibiotic resistance compared to those carried out by Gangoue-Piebojiet et al. (2006) showing a reduction of transmission of resistance of *Pseudomonas aeruginosa* in Yaounde compared to Douala. However, the difference in the two works reviewed in Yaounde could be due to the smaller number of isolates studied by Gonsu et al.

The characteristic of Buea may be different from Douala but they have a similarity in overcrowding in certain section of the town due to a concentration of housing. Buea is an intensely academic township with a high number of institutions of higher learning. Thus, the same factors in Douala are found in Buea. One factor for Buea is the milder climate.

On the whole, it would be necessary to conduct studies yearly for surveillance of resistance in the different regions of Cameroon.

The frequency of distribution of *Pseudomonas aeruginosa* is highest in the city of Douala. This could be due to the overcrowding of this city. Furthermore, the proximity of households and the non-observance of hygiene measures by a large part of its population would contribute to the spread of this bacteria in the population.

CONCLUSION

Although very few studies have been conducted in Cameroon to assess the resistance of *Pseudomonas aeruginosa* to antibiotics. This study allowed us to assess the dynamics of *P. aeruginos*a and the evolution of its resistance to some antibiotics in Cameroon. This bacteria thus presents a predominant resistance in the city of Douala followed by the city of Buea and Yaounde.

REFERENCES

