

Influence of Variety and Pre-treatment on Oil Properties of Mechanically Expressed Castor Oil

*F. A. Oluwole ${ }^{1}$, N. A. Aviara ${ }^{2}$, B. Umar ${ }^{2}$ and A. B. Mohammed ${ }^{1}$
${ }^{1}$ Department of Mechanical Engineering, University of Maiduguri, Maiduguri, Nigeria ${ }^{2}$ Department of Agricultural and Environmental Resources Engineering, University of Maiduguri, Maiduguri, Nigeria
${ }^{3}$ Department of Agricultural and Environmental Resources Engineering, University of Maiduguri, Borno State, Nigeria.

Accepted 03 January 2015
Oil was mechanically expressed from four varieties of pre-treated castor seeds, namely: white big size (WBS), black big size (BBS), grey medium size (GMS) and grey small size (GSS) using hydraulic press. The expressed oils were analyzed to investigate the effects of pre-treatment (nature of seed and heating method) on some of these properties (acid value, saponification value, iodine value, specific gravity, viscosity, refractive index, pH value and peroxide value) of these varieties. Mathematical models for acid and saponification values of castor oil were developed by factorial analysis. The studied factors were seed variety (WBS, BBS, GMS and GSS), nature of seed (dehulled and undehulled seeds) and heating method (raw, boiled and roasted seeds). It was revealed that acid value and saponification value were significantly affected by seed variety and heating method at 5% level of significance, while iodine value, specific gravity, viscosity, refractive index, pH value and peroxide value were not statistically affected by seed variety, heating method and nature of seed. The model predicted that the maximum and minimum acid values were 3.88% and 0.66% from WBS (roasted and undehulled) and GMS (raw and dehulled) respectively. While the maximum and minimum saponification values were 195.19% and 166.53% from BBS (roasted and undehulled) and GMS (raw and dehulled) respectively.

Keywords: Castor seed, castor oil, oil expression, oil properties, seed variety, model equation

INTRODUCTION

Castor plant, (Ricinus communist L.) is a member of the Euphorbiaceae, which contains a vast number of plants mostly native to the tropics (Akpan, et al. 2006). In Nigeria, castor is obtained in every part of the country. Its seed contains 40 to 60 \% oil (Olaoye, 2000). The seed is referred to differently depending on the locality where it is found. The Yorubas call it 'Lara', the Hausas refer to it as 'Zurma', and the Kanuris call it 'Kwolakwola', while the Igbos refers to it as Ogilisi (Oluwole, 2010). The oil
extracted from the seed is traditionally used as medicinal ointment, illuminant, and as raw material in the soap making industry. At present, the potential of castor oil is not fully explored in Nigeria. Plate 1 shows the seeds of four common varieties of the crop that have been identified. These have been named as White Big Size (WBS), Black Big Size (BBS), Grey Medium Size (GMS) and Grey Small Size (GSS) (Oluwole, 2010). Castor seed oil is a colorless to very pale yellow liquid with mild or no

Plate 1. Common Castor seeds: A -WBS; B -BBS; C -GMS; D-GSS ((WBS)-White Big Size, (BBS)-Black Big Size, (GMS)- Grey Medium Size and (GSS)-Grey Small Size)

Plate 2. Hydraulic Press used for the oil Expression
odor or taste (Akpan, et al. 2006). The oil is essentially a pure triglyceride and contains almost 90% of glyceryltrianoleate (Marter, 1981). Castor oil is an amber viscous liquid and is sometimes known as ricinus oil (Marter, 1981). The oil itself contains a number of fatty acids such as oleic acid, liniteic acid, stearic acid and palmitic acid. Among the vegetable oil however, castor oil is distinguished by its high content of ricinoleic acid than any other vegetable oil (Chakrabarti and Rafiq 2008). Castor oil is unique as it is the only source of an 18carbon hydroxylated acid with one double bond (Chakrabarti and Rafiq 2008). The product uniformity and consistency of castor oil are significantly high for a naturally occurring material. It has unsaturated bond, high molecular weight, low melting point and very low solidification point which make it industrially useful. The pure cold drawn (expressed) castor oil is used as a purgative (Olaniyan, 2010), it also have applications in the manufacturing of soaps, lubricants, hydraulic and brake fluids, paints, dyes, coating, inks, cold resistant, plastics, varnishes, lacquers, oil clothes, linoleum grease, waxes and polishes, nylon, pharmaceuticals and perfumes and also as a raw material in the manufacturing of various chemicals (Oluwole, 2010).

Three major means of recovering oil from oil-bearing biological materials was reported by Olaniyan (2010): wet extraction; solvent extraction and mechanical expression. The wet extraction process is known as hot water or steam extraction method, which is the oldest method of extraction used traditionally by women in rural communities. Alonge and Olaniyan (2003) and Addaquay (2004) used this method for shea butter extraction, Alonge et al. (2003) for groundnut oil extraction, Alonge and Olaniyan (2006) for thevetia oil extraction. The same method was used by Oluwole et al. (2012) for castor seed oil extraction. The result showed percent of oil expression of 19.42%, which is below the range of the percentage oil content ($30-55 \%$) of castor seed found in literature (Olaniyan, 2010).
Akpan et al. (2006) carried out an investigation on extraction, characterization and modification of castor seed oil using solvent extraction method. Result showed percentage oil extraction of 33.2%. In another development, Shridhar et al. (2010) carried out an optimization and characterization of castor seed oil using solvent extraction method. Result showed percentage of oil extraction of 48.75%. Also Abitogun et al. (2009) extracted and characterized castor seed oil using solvent

Table 1: Properties of oil from pre-treated castor seeds

Std	Seed Variety	Nature of Seed	Heating Method	Acid Value	Saponification Value	Iodine Value	Specific Gravity	Viscosity	Refractive Index	pH Value	Peroxide Value
1	WBS	Dehulled	Raw	2.00	183.43	82.33	0.965	1465	1.4773	4.01	8.6
2	WBS	Undehulled	Raw	2.61	180.62	86.65	0.965	1509	1.4772	4.02	9.7
3	WBS	Dehulled	Boiled	2.97	185.16	87.07	0.994	1680	1.4773	4.03	10.6
4	WBS	Undehulled	Boiled	3.20	186.55	89.67	0.983	1389	1.4766	4.06	15.6
5	WBS	Dehulled	Roasted	3.65	188.93	88.21	0.989	1185	1.4774	4.04	5.4
6	WBS	Undehulled	Roasted	3.93	190.92	90.09	0.957	1014	1.4771	4.08	8.4
7	BBS	Dehulled	Raw	1.40	180.11	84.76	0.956	1430	1.4771	4.01	9.6
8	BBS	Undehulled	Raw	1.52	181.43	86.22	0.962	1155	1.4765	4.03	11.2
9	BBS	Dehulled	Boiled	1.96	189.34	85.65	0.978	1617	1.4775	4.05	6.8
10	BBS	Undehulled	Boiled	2.36	190.74	98.98	0.984	1323	1.4774	4.04	8.0
11	BBS	Dehulled	Roasted	3.03	196.35	90.09	0.827	1230	1.4773	4.03	11.0
12	BBS	Undehulled	Roasted	3.14	194.94	97.71	0.843	1572	1.4772	4.02	10.6
13	GMS	Dehulled	Raw	1.01	165.32	85.78	0.965	1222	1.4772	4.04	4.3
14	GMS	Undehulled	Raw	1.06	168.54	87.22	0.876	1232	1.4765	4.06	8.6
15	GMS	Dehulled	Boiled	1.21	170.32	82.01	0.956	1300	1.4768	4.03	4.1
16	GMS	Undehulled	Boiled	1.57	173.91	81.21	0.954	1320	1.4768	4.08	4.0
17	GMS	Dehulled	Roasted	2.21	178.76	84.06	0.945	1260	1.4772	4.01	4.3
18	GMS	Undehulled	Roasted	1.63	180.92	81.85	0.880	1365	1.4773	4.03	4.0
19	GSS	Dehulled	Raw	1.40	178.69	85.23	0.905	1325	1.4774	4.02	6.2
20	GSS	Undehulled	Raw	1.52	180.15	83.78	0.945	1360	1.4767	4.03	5.2
21	GSS	Dehulled	Boiled	1.96	181.09	84.65	0.955	1320	1.4775	4.04	5.7
22	GSS	Undehulled	Boiled	2.52	185.13	85.65	0.905	1590	1.4774	4.04	6.4
23	GSS	Dehulled	Roasted	3.03	183.33	91.07	0.925	1455	1.4773	4.02	10.1
24	GSS	Undehulled	Roasted	3.14	190.74	97.71	0.955	1260	1.4773	4.03	11.2

extraction method. Result showed that 48% oil was extracted. It was reported by Akpan et al. (2006) that the best available method for castor oil extraction at present is by the use of hydraulic press.
According to Olaniyan (2010), oilseed pretreatment prior to oil extraction/expression normally affects oil yield and quality. Increase in castor seed heating temperature increases oil yield / oil recovery and oil properties such as Free Fatty Acid (FFA), total acid value, iodine value, saponification value and peroxide value (Olaniyan, 2010). Tuned-Akintunde et al. (2001) investigated the effects of moisture content,
heating temperature, heating time, applied pressure and pressing time on soybean oil yield using mechanical press. Result showed that oil yield increased as moisture content was varied from $7.3-10.2 \%$, pressure from $28-41 \mathrm{MPa}$ heating temperature from $70-80^{\circ} \mathrm{C}$ and heating time from 15-30 minutes. Fashina and Ajibola (1989) investigated the effects of moisture content, heating temperature, heating time, applied pressure and pressing time on the yield of oil expressed from conophor nuts. Result showed that the oil yield at any pressure was dependent on the moisture content of the sample. High oil yield was reported for samples within moisture
content range of 8 and 10% after heating. The maximum oil yield of 39.6% (66% extraction efficiency) was obtained when milled conophor nut conditioned to 11% moisture content was heated at $65^{\circ} \mathrm{C}$ for 28 minutes and expressed at a pressure of 25 MPa .
Olaniyan (2010) investigated effects of extraction conditions on the yield and quality of oil from castor seed. Result showed maximum oil yield of 41.67% (75.76% oil recovery) at heating temperature of $90{ }^{\circ} \mathrm{C}$, pressure of 135 kPa and pressing time of 12 minutes using crushed seed. The percentages of oil extracted or expressed

Table 2. ANOVA of Acid Value

Source	Sum of Squares	df	Mean Square	F Value	p-value Prob $>$	significant
Model	15.94	6	2.66	49.81	<0.0001	
A-Seed variety	7.79	3	2.60	48.73	<0.0001	
B-Nature of seed	0.23	1	0.23	4.39	0.0515	
C-Heating method	7.91	2	3.95	74.16	<0.0001	
Residual	0.91	17	0.05			
Cor Total	16.84	23				

$R^{2}=0.9462$

Table 3. ANOVA of Saponification Value

Source	Sum of Squares	df	Mean Square	F Value	p-value Prob $>\mathbf{F}$	significant
Model	1350.10	6	225.02	46.03	<0.0001	
A-Seed variety	857.82	3	285.94	58.50	<0.0001	
B-Nature of seed	23.52	1	23.52	4.81	0.0425	
C-Heating method	468.76	2	234.38	47.95	<0.0001	
Residual	83.10	17	4.89			
Cor Total	1433.20	23				

$R^{2}=0.9420$
from castor seed by these researchers using solvent extraction method or mechanical expression method fall within the range of the percentage oil content ($30-55 \%$) of castor seed found in literature (Akpan et al., 2006; Olaniyan, 2010; and Shridhar et al., 2010), depending on the variety.

Oluwole et al., (2014) investigated influence of variety on oil yield and oil recovery of castor seed. Their results showed oil yield/oil recovery of 28.69/52.16, 21.23/38.60, 34.87/63.40 and $30.65 / 55.72 \%$ for undehulled WBS, BBS, GMS and GSS respectively; oil yield/oil recovery of $35.43 / 64.42,27.98 / 50.87,41.62 / 75.67$ and $37.39 /$ 67.99% for dehulled WBS, BBS, GMS and GSS respectively. Though, something close to 100% oil recovery (55% oil yield) would have been expected, but the mode of extraction and seed variety are very important parameters affecting the oil yield as reported (Akpan et al., 2006). This study aims at investigating the varietal and pre-treatment effects on quality of mechanically expressed castor seed oil. Information obtained from this study would elucidate the problems of castor oil expression and enable the development of processing method that will yield high-quality oil for micro, small and medium scale castor oil processors.

MATERIALS AND METHODS

Materials Sourcing

Bulk quantities of the four varieties of castor seeds namely; white big size (WBS), black big size (BBS), grey medium size (GMS) and grey small size (GSS) were collected from different localities in Borno and Yobe States of Nigeria.

Moisture Content Determination

Prior to oil extraction, the moisture contents of the seeds were determined using the method reported by ASAE (1983), Aviara et al. (2005), Oluwole et al. (2007). This method involves oven drying of samples at $130^{\circ} \mathrm{C}$ for 6 hours.

Oil Expression

The four varieties of castor seeds were prepared for the oil expression by drying the seeds to a moisture content

Design-Eper:0 Sftware

Figure 1: Effects of seed variety and heating method on acid value of oil from dehulled castor seeds

Excy $\operatorname{set} y$ Has

- Desig in points belori prediclad ual ue
$x^{*}=$ = Hest merx

At.a Fastr

Figure 3: Effects of seed variety and heating method on saponification value of oil from dehulled castor seeds
of 5 to 6% (db), each variety was divided into three (3) portions (Raw - sample A, Boiled - sample B and

CesignExerv Scturs

Figure 2: Effects of seed variety and heating method on acid value of oil from undehulled castor seeds

Lesgn-wpertsudver
sapaniticeior vilue

- Legn ponts sboveradiedvelu

к1 = Hesing metiod
rat A seduar evi
ficual Facio
E: in glo

Figure 4: Effects of seed variety and heating method on saponification value of oil from undehulled castor seeds

Roasted- sample C). Each of these portions was further divided into two (2) to have dehulled and undehulled

Table 4. Regression coefficient of the oil acid value

Term	Coefficient Estimate	df	Standard Error	$95 \% \mathrm{Cl}$ Low	95\% CI High	VIF
Intercept	2.25	1	0.05	2.15	2.36	
A_{1}	0.81	1	0.09	0.63	0.99	
A_{2}	0.02	1	0.09	-0.17	0.20	
A_{3}	-0.80	1	0.09	-0.99	-0.62	
B- nature of seed	0.08	1	0.05	-0.02	0.19	1.00
C_{1}	-0.69	1	0.07	-0.84	-0.54	
C_{2}	-0.03	1	0.07	-0.18	0.12	

$$
R^{2}=0.9462
$$

Table 5. Regression coefficient of the oil saponification value

Term	Coefficient Estimate	df	Standard Error	$\begin{aligned} & \hline 95 \% \mathrm{Cl} \\ & \text { Low } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 95 \% \mathrm{Cl} \\ & \text { High } \\ & \hline \end{aligned}$	VIF
Intercept	182.73	1	0.45	181.77	183.68	
A_{1}	3.21	1	0.78	1.56	4.86	
A_{2}	6.09	1	0.78	4.44	7.74	
A_{3}	-9.76	1	0.78	-11.41	-8.11	
B-nature of seed	0.99	1	0.45	0.04	1.94	1.00
C_{1}	-5.44	1	0.64	-6.79	-4.09	
C_{2}	0.05	1	0.64	-1.29	1.40	

$$
R^{2}=0.9420
$$

samples. The raw seeds, sample A were kept as control samples while the other two samples (B and C) were prepared for the experiments.

The process conditions include two heating methods (boiling and roasting with raw as control sample), three heating temperatures of $30{ }^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$ and $90{ }^{\circ} \mathrm{C}$ and three heating time durations of $5 \mathrm{~min}, 10 \mathrm{~min}$ and 15 min . at constant pressing pressure of $135 \mathrm{~N} / \mathrm{m}^{2}$, and pressing time of 12 min was adopted. These ranges of heating temperature and heating time were chosen based on literature review and preliminary laboratory experiments (Olaniyan, 2010). 3 kg of each sample was weighed, roasted at 30,60 and $90^{\circ} \mathrm{C}$ for 5,10 and 15 min , and boiled at 30,60 and $90{ }^{\circ} \mathrm{C}$ for 5,10 and 15 min . The boiled samples were sun dried in open air for 24 hrs . Oil expression was accomplished using 100 g of each sample, which was expressed for 12 min , using a hydraulic press shown in Plate 2 at pressure of $135 \mathrm{~N} / \mathrm{m}^{2}$. The same procedure was repeated for dehulled seed and undehulled seed samples with three replicates making a total of 456 experimental trials that were carried out and the average values were recorded.

Oil yield ($\zeta_{\text {oil }}$) was calculated as;
$\zeta_{\text {oil }}=M_{\text {oii }} / M_{\text {seed }} \times 100 \%$
(1) Oil recovery was
calculated as;
$\zeta_{\text {oil rec }}=M_{\text {oil }} / X M_{\text {seed }} \times 100 \%$
(2)

Where $M_{\text {oil }}=$ mass of oil expressed, kg
$M_{\text {seed }}=$ mass of oil seed, kg
$X=$ oil content of oilseed (0.55 or 55% from Olaniyan, 2010)
The applied expression force was obtained from the gauge of the hydraulic press and the expression pressure was calculated by dividing the applied force by the crosssectional area of the press cage cylinder. Samples of oil expressed were subjected to physio-chemical analysis to determine the quality using the AOAC (2002) method. Data obtained from the experiments for measured output were statistically analyzed for analysis of variance (ANOVA) using Design Expert 7.0 Software.

Characterization of the Expressed Oil

The expressed oils from the four castor seeds varieties with different pre-treatments were characterized to determine some of their properties (acid value (AV), lodine Value (IV), Saponification Values, Peroxide Value, Refractive Index, relative density (Specific gravity),

Table 6．Factorial design of the significant oil properties using coded factors

S／No．	Seed Variety		Nature of Seed		Heating Method		Acid Value		Saponification Value	
	Actual	Coded	Actual	Coded	Actual	Coded	Actual	Predicted	Actual	Predicted
1	WBS	\｛100\}	Dehulled	\｛－1\}	Raw	\｛1 0\}	2.00	2.28	183.43	179.51
2	BBS	\｛010\}	Dehulled	\｛－1\}	Raw	\｛10 0	1.40	1.45	180.11	182.39
3	GMS	\｛001\}	Dehulled	\｛－1\}	Raw	\｛1 0 $⿻ ⿳ 一 冂 䒑 山$	1.01	0.66	165.32	166.53
4	GSS	\｛－1－1－1\}	Dehulled	\｛－1\}	Raw	\｛10 0	1.40	1.48	178.69	176.76
5	WBS	$\{100\}$	Undehulled	\｛1\}	Raw	\｛10 0	2.61	2.47	180.62	181.49
6	BBS	\｛010\}	Undehulled	\｛1\}	Raw	\｛1 0 $⿻$ 1	1.52	1.65	181.43	184.37
7	GMS	\｛001迷	Undehulled	\｛1\}	Raw	\｛1 0 $⿻ ⿳ 一 冂 䒑 山$	1.06	0.86	168.54	168.51
8	GSS	\｛－1－1－1\}	Undehulled	\｛1\}	Raw	$\left.\begin{array}{ll}1 & 0\end{array}\right\}$	1.52	1.67	180.15	178.74
9	WBS	$\{100\}$	Dehulled	\｛－1\}	Boiled	\｛0 10 1 l	2.97	2.93	185.16	185.00
10	BBS	\｛010\}	Dehulled	\｛－1\}	Boiled	\｛0 10 0	1.96	2.10	189.34	187.88
11	GMS	\｛0011\}	Dehulled	\｛－1\}	Boiled	\｛0 10	1.21	1.32	170.32	172.03
12	GSS	\｛－1－1－1\}	Dehulled	\｛－1\}	Boiled	\｛0 10 1	1.96	2.13	181.09	182.25
13	WBS	$\{100\}$	Undehulled	\｛1\}	Boiled	$\left\{\begin{array}{lll}0 & 1\end{array}\right\}$	3.20	3.13	186.55	186.98
14	BBS	\｛010\}	Undehulled	\｛1\}	Boiled	\｛0 10 1	2.36	2.30	190.74	189.86
15	GMS	\｛0011\}	Undehulled	\｛1\}	Boiled	\｛0 10 1	1.57	1.51	173.91	174.01
16	GSS	\｛－1－1－1\}	Undehulled	\｛1\}	Boiled	\｛0 1 1	2.52	2.33	185.13	184.23
17	WBS	$\{100\}$	Dehulled	\｛－1\}	Roasted	\｛－1－1\}	3.65	3.68	188.93	190.33
18	BBS	\｛010\}	Dehulled	\｛－1\}	Roasted	\｛－1－1\}	3.03	2.86	196.35	193.21
19	GMS	\｛001\}	Dehulled	\｛－1\}	Roasted	\｛－1－1\}	2.21	2.07	178.76	177.36
20	GSS	\｛－1－1－1\}	Dehulled	\｛－1\}	Roasted	\｛－1－1\}	3.03	2.88	183.33	187.58
21	WBS	$\{100\}$	Undehulled	\｛1\}	Roasted	$\{-1-1\}$	3.93	3.88	190.92	192.31
22	BBS	$\{010\}$	Undehulled	\｛1\}	Roasted	\｛－1－1\}	3.14	3.05	194.94	195.19
23	GMS	\｛0011\}	Undehulled	\｛1\}	Roasted	\｛－1－1\}	1.63	2.27	180.92	179.34
24	GSS	\｛－1－1－1\}	Undehulled	\｛1\}	Roasted	\｛－1－1\}	3.14	3.08	190.74	189.56

viscosity and pH value）following the procedures described by Akpan et al．（2006），Abitogun et al． （2009）and Shridhar et al．（2010）．

RESULTS AND DISCUSSION

Using the formulae as indicated in the experimental procedures，properties of oil from pre－treated

Effects of seed pre－treatment on oil properties

Tables 2 and 3 show the ANOVA of acid value and saponification value of the expressed oil respectively．It can be seen from these tables that
seed variety and heating method significantly affected the acid and saponification values of the expressed oil．These results agree with the findings of Adeeko and Ajibola（1989），Olaniyan and Oje（2007）and Olaniyan（2010）．Figures 1 and 2；and Figures 3 and 4 showed the effects of seeds variety and heating method on the oil acid and saponification values for dehulled and undehulled seeds respectively．It is evident from these Figures that the roasted seeds have the highest acid value and saponification value followed by the boiled seeds and the least is observed from the raw seeds．It is obvious that the WBS have the highest percentage of acid value followed by the BBS，then the GSS and the
least value is observed from the GMS；while the BBS have the highest saponification value followed by the WBS then the GSS and the least is from the GMS．
Tables 4 and 5 present the regression coefficient of acid value and saponification value models of expressed castor oil．The negative coefficient terms in equations 3－28 obtained from Tables 4 and 5 indicated that the factors have negative influence，while the positive terms
in the equations indicated that the factors have positive influence on the acid and saponification values of the oil．In order to validate the model developed，experimental data generated in Table 6 （in terms of coded values）
were substituted in equations 3 and 16 and the predicted acid and saponification values were obtained as shown in Table 6. The model predicted that the maximum acid value was 3.88% from roasted and undehulled WBS and the minimum acid value was 0.66% from raw and dehulled GMS. While the maximum saponification value was 195.19% from roasted and undehulled BBS and the minimum saponification value was 166.53% from raw and dehulled GMS. It is obvious from this Table that the comparison of experimental (actual) values with the predicted values is in close proximity.

Acid Value $=2.25+0.81 A_{1}+0.015 A_{2}-0.80 A_{3}+0.082 B-$ $0.69 C_{1}-0.029 C_{2}$ 3
where A stand for the coded value of seed variety (for WBS, values of $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right\}=\{1,0,0\}$; for $\mathrm{BBS}=\{0,1,0\}$; for $\operatorname{GMS}=\{0,0,1\}$ and for GSS $=\{-1,-1,-1\}$ and B stand for the coded value of nature of seed) (for Dehulled seed, value of $\{B\}=\{1\}$; for Undehulled seed, $\{B\}=\{-1\}$ and C stands for the coded value of heating method (for Raw seed, value of $\left\{\mathrm{C}_{1}, \mathrm{C}_{2}\right\}=\{1,0\}$ for Boiled seed, value of $\left\{\mathrm{C}_{1}, \mathrm{C}_{2}\right\}=\{0,1\}$; for Roasted seed, $\left\{\mathrm{C}_{1}, \mathrm{C}_{2}\right\}=\{-1,-1\}$.
In order to validate the developed model, the coded values above were substituted in equation 3 , from where equetions 4-15 were generated for each of the seed sample.

$$
\begin{aligned}
& \text { Acid Value }{ }_{\text {WBS Raw }}=2.25+0.81 A_{1}+0.082 B-0.69 C_{1} 4 \\
& \text { Acid Value }_{\text {WBS Boiled }}=2.25+0.81 A_{1}+0.082 B-0.029 C_{2} 5 \\
& \text { Acid Value }{ }_{\text {WBS Roasted }}=2.25+0.81 A_{1}+0.082 B+0.72 C_{3} 6 \\
& \text { Acid Value } \text { BBS Raw }=2.25+0.015 A_{2}+0.082 B-0.69 C_{1}{ }_{7} \\
& \text { Acid Value } \text { BBS Boiled }=2.25+0.015 A_{2}+0.082 B-0.029 C 8 \\
& \text { Acid Value } \text { BBS Roasted }=2.25+0.015 A_{2}+0.082 B+0.72 C_{3} 9 \\
& A^{\text {cid }} \text { Value }_{\text {GMS Raw }}=2.25-0.80 A_{3}+0.082 B-0.69 C_{1} \quad 10 \\
& \text { Acid Value }_{\text {GMS Boiled }}=2.25-0.80 A_{3}+0.082 B-0.029 C_{2} \\
& \text { Acid Value }{ }_{\text {GMS Roasted }}=2.25-0.80 A_{3}++0.082 B+0.72 C_{3} 12 \\
& \text { Acid Value }{ }_{\text {GSS Raw }}=2.25-0.03 A_{4}+0.082 B-0.69 C_{1} \quad{ }_{13} \\
& A^{\text {Acid Value }} \text { Gss Boiled }=2.25-0.03 A_{4}+0.082 B-0.029 C_{2} \quad 14 \\
& \text { Acid Value } \text { GSS Roasted }=2.25-0.03 A_{4}+0.082 B+0.72 C_{3} \quad 15 \\
& \text { Saponification Value }=182.73+3.21 A_{1}+6.09 A_{2}-9.76 A_{3}+ \\
& \text { 0.99B-5.44C }+0.054 C_{2} \\
& 16
\end{aligned}
$$

where A stand for the coded value of seed variety; for WBS, values of $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right\}=\{1,0,0\}$; for $\mathrm{BBS}=\{0,1,0\}$; for $\operatorname{GMS}=\{0,0,1\}$ and for $G S S=\{-1,-1,-1\}$ and B stand for the coded value of nature of seed; for Dehulled seed, value of $\{B\}=\{1\}$; for Undehulled seed, $\{B\}=\{-1\}$ and C stands for the coded value of heating method; for Raw seed, value of $\left\{C_{1}, C_{2}\right\}=\{1,0\}$ for Boiled seed, value of $\left\{\mathrm{C}_{1}, \mathrm{C}_{2}\right\}=\{0,1\}$; for Roasted seed, $\left\{\mathrm{C}_{1}, \mathrm{C}_{2}\right\}=\{-1,-1\}$. In order to validate the developed model, the coded values above were substituted in equation 16 , from
where equetions $17-28$ were generated for each of the seed sample.

$\begin{aligned} & 182.73+6.09 A_{2}+0.99 B+5.39 C_{3} \\ & \text { Saponification Value } \\ & \text { GMS Raw }\end{aligned}=182.73-9.76 A_{3}+0.99 B-$
$5.44 C_{1} 23$

gMs	Boiled	82.73
9.76A $A_{3}+0.99 B+0.054 C_{2} \quad 24$		
Saponification Value ${ }_{\text {GN }}$	Roasted	182
$9.76 A_{3}+0.99 B+5.39 C_{3} \quad 25$		
Saponification Value $_{\text {GSS }}$ Raw $=182.73+0.46 A_{4}+0.99 B-$ $5.44 C_{1} \quad 26$		
Saponification Value ${ }_{\text {GSS }}$		Boiled =
$182.73+0.46 A_{4}+0.99 B+0.054 C_{2}$	27	
Saponification Value ${ }_{\text {GSs }}$		Roasted
22.73+0.46A ${ }_{4}+0.99 B+5.39 C_{3}$	28	

CONCLUSION

4
In this study, effects of seed vfriety, nature of seed and seed heating method on some properties of mechanically expressed castor seed oil vere investigated. It was revealed that acid value and 7 saponification value were significantly affected by seed variety and heating method while iodine value, specific geavity, viscosity, refractive index, pH value and peroxide value were not significantly affected by these factors. Castbr oil has a lot of agroindustrial potentials, it is, theremre, necessary to select the most promising castor seeal variety and seed pretreatment in order to obtain high 4quality castor oil.

REFERENCES

Abibtogun AS, Alademeyin OJ, and Oloye DA (2009). Extraction and Characterization of Castor Seed Oil. International Journal of Nutrition and Wellness 8(2): 1-5.
Addaquay J (2004). The Shea Butter Value Chain: Refining in West Africa. WATH Technical Report No. 3. The United States Agency for International Development, USA.
Adeeko KA, and Ajibola OO (1989). Processing Factors Affecting Yield and Quality of Machanically Expressed Groundnut Oil. Journal of Agricultural Engineering Research, 5: 31-43.
Akpan, U. G., Jimoh, A.and Mohammed, A. D. (2006). Extraction, Characterization and Modification of Castor Seed Oil. Leonardo Journal of Sciences 8: 43-52.
Alonge AF, and Olaniyan AM (2003). Effect of Processing Factors on Oil Yield of Shea Butter During Wet Extraction. Niger Journal of

Technology and Development. 3(2): 126-133.
Alonge AF, Olaniyan AM, and Agbaje CO (2003). Effect of Dilution Ratio, Water Temperature and Pressing Time on Oil Yield from Groundnut Oil Expression. Journal of Food Science and Technology, 40(6): 652-655.
Alonge AF, and Olaniyan AM (2006). Effect of Dilution Volume, Water Temperature and Pressing Time on Oil Yield from Thevetia Kernel during Extraction. Agricultural Mechanization in Asia, Africa and Latin America, 37(2): 79-83.
AOAC (2002). Official method of analysis. $17^{\text {th }}$ edition. Association of official analytical chemists, Gaithersburge, Maryland, USA.
ASAE (1983). ASAE standards: ASAE 352.1 Moisture measurementGrains and seeds. American Society of Agric. Engineers. St. Joseph, Michigan.
Aviara NA, Oluwole FA, and Haque MA (2005). Effect of moisture content on some physical properties of sheanut (Butyrospernum paradoxum). International. Agrophysics, 19: 193-198.
Chakrabarti MH, and Rafiq A (2008). Transesterification Studies on Castor Oil as a First Step Towards its Use in Biodiesel Production. Pakistan Journal Bot., 40 (3): 1153-1157.
Fashina OO, and Ajibola OO (1989). Mechanical Expression of Oil from Conophor Nut. Journal of Agricultural Engineering Research, 44: 275-287.
Marter AD (1981). Castor: Markets, Utilization and Prospects, Tropical Product Institute, G152, 55-78.
Mesfin KT (2008). Investigation of Alternative Locally Available Feedstock Sources for Biodiesel Production in Ethiopia. MSc Thesis Addis Ababa University School of Graduate Studies Environmental Science Program.
Olaniyan AM, and Oje K (2007). Development of mechanical expression rig for dry extraction of shea butter from shea kernel. Journal of Food Science and Technology, 44(5): 465-470
Olaniyan AM (2010). Effect of Extraction Conditions on the Yield and Quality of Oil from Castor Bean. Journal of Cereals and Oilseeds. Vol. 1 (2) 24-33.

Olaniyan AM, and Oje K (2011). Development of Model Equations for Selecting Optimum Parameters for Dry process of Shea Butter Extraction. Journal of Cereals and Oilseeds, 2(4): 47-56.
Olaoye JO (2000). Some physical properties of castor oil relevant to design of processing equipment, Journal of agricultural Engineering research, 77: 113-118.
Oluwole, FA, Abdulrahim AT, and Aviara NA (2007). Development and performance test of a spindle press for oil extraction. Arid Zone Journal of Engineering, Technology and Environment, 5: 66-75.
Oluwole FA (2010). Some Physical Properties of Castor Seeds. Nonthesis based Ph. D seminar II, University of Maiduguri, Nigeria.
Oluwole FA, Abdulrahim AT, Aviara NA, and Nana S. Ndahi (2012). Traditional Method of Extracting Castor Oil. Continental Journal of Engineering Sciences, 7 (2): 6-10.
Oluwole FA, Aviara NA, Umar B, and Umara BG (2014). Influence of Variety on Oil Yield and Oil Recovery of Castor Seed. Continental Journal of Engineering Sciences, 9 (1): 9-18.
Shridhar BS, Beena KV, Anita MV, and Paramjeet KB (2010). Optimization and Characterization of Castor Seed oil. Leonardo Journal of sciences. 17: 59-70.
Tunde-Akintunde TY, Akintunde BO, and Igbeka JC (2001). Effects of Processing Factors on Yield and Quality of Mechanically Expressed Soybean oil. Journal of Agricultural Engineering Technology, 9: 39-45.

