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Fault detection is often utilized for proper operation of environmental processes. In this paper, a 
nonlinear statistical fault detection using nonlinear fuzzy robust principal component analysis (NFRPCA) 
-based generalized likelihood ratio test (GLRT) is proposed. The objective of this work is to extend our 
previous work (Mansouri et al., 2015), to achieve further improvements and widen the applicability of the 
developed method in practice by using the NFRPCA method. It is well known that the principal 
components are often affected by outliers, thus may not capture the true structure of the data. Therefore 
data reduction based on PCA becomes unreliable if outliers are present in the data. To relieve the noise 
sensitivity, to obtain accurate principal components of a data, and to reduce the effective system 
dimension, we propose to use the nonlinear fuzzy robust principal component analysis. The objective of 
this paper is to combine the GLRT with NFRPCA model in an attempt to improve the performance of fault 
detection. GLRT-based NFRPCA is a multivariate statistical method utilized in fault detection. Here the 
fault detection problem is addressed so that the data are first modeled using the NFRPCA analysis 
algorithm and then the faults are detected using generalized likelihood ratio test. The data is collected 
from the crop model data in order to calculate the NFRPCA model, the thresholds and the fault detection 

indices (Hotellingstatistic 
2T , Q statistic). It is demonstrated that the performance of faults detection can 

be improved by combining GLRT and NFRPCA. 
 
Keywords: Environmental processes, fault detection, Generalized likelihood ratio test, Nonlinear fuzzy robust, 
Principal component analysis. 

 
 
INTRODUCTION 
 
Effective operation of various engineering systems requires 
tight monitoring of some of their key process variables. 
Process systems are using large amount of data from many 
variables   that   are     monitored    and   recorded  
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continuously every day. For these reasons, the problem of 
fault detection that responses effectively to faults that 
mislead the process and harm the system reliability 
represents a key process in such operation of these 
systems(Mourad and Bertrand-Krajewski 2002).Several 
multivariate statistical techniques for fault detection, 
analysis of process and diagnosis have been developed 
and used in practice.  These techniques are useful since 
operation safety  
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and the better quality products are some of the main goals in 
the industry applications. Faults detection has been 
performed manually using data visualization tools (Tang et 
al., 2001), however these tools takes a lot of time for 
real-time detection with continuous data. In the most recent 
years, researchers have proposed machine learning and 
automated statistical methods like: nearest neighbor 
(Ramaswamy et al., 2000; Bolton et al., 2001), clustering 
(Rousseeuw and  Ruts 1996), minimum volume ellipsoid 
(Ruts and Rousseeuw 1996), convex pealing (Gonzalez et 
al., 2002), neural network classifier (John 1995), decision 
tree (Bulut et al., 2005) and support vector machine 
classifier (Jackson and Mudholkar 1979). These proposed 
techniques are quicker than other manual techniques, 
however there are disadvantages which make them 
inadequate for continuous fault detection for the cases of 
streaming data. More recently, principal component 
analysis (PCA) and multivariate statistical process 
control(MSPC) approach are proposed to overcome these 
problems. The authors in (Chiang et al., 2001), have 
proposed PCA as a tool of MSPC. Also, PCA was defined as 
a method which projects a high dimensional measurement 
space into a lower dimensional space (Mac Gregor and 
Kourti 1995). PCA provides linear combinations of 
parameters which demonstrate most common trends in a 
data set. In mathematical terms, PCA relies on the 
orthogonal decomposition of the covariance matrix over the 
process variables along with the directions which give the 
maximum data variation. It is also mentioned that PCA is 
researched for two problems: the MSPC (David and Marta 
2008), and fault detection and isolation (FDI) problem 
(Luukka 2011). Authors of (Luukka 2011), have listed 
diagnosis and fault detection techniques in three categories: 
(i) quantitative model-based schemes, (ii)qualitative model 
schemes and corresponding search strategies and (iii) 
process data based techniques. PCA falls into the third 
category since it utilizes databases in an attempt to obtain 
the statistical (PCA model). The main indices used with PCA 

methods are Hotellingstatistic,
2T  ; sum of squared 

residuals, SPE; and/or Qstatistics. The 
2T  statistic isa way 

to measure the variation captured in the PCA model 

whereas the Qstatistic is a way to measure the amount of 

variation which was not captured by the PCA model. PCA is 
known to be one of the most popular MSPC monitoring 
methods. Nevertheless, there are some disadvantages of it. 
One disadvantage is that the PCA is not suitable for 
monitoring processes that show non-stationary behavior. 
The other shortcoming of the PCA model is that most of the 
processes run under different circumstances. The use of 
standard PCA solution in this kind of processes might 
produce too many missed faults, since the grade transitions 
from one operation mode to another operation mode might 
damage the correlation existing between various 
parameters. In addition, the disturbances that are measured 
may be         treated        as         faults.         Moreover,    the  

 
 
 
 
principal components resulted from the standard PCA are 
often affected by outliers or noise and may not capture the 
true structure of the data, we propose to use the nonlinear 
fuzzy robust principal component analysis (NFRPCA) model 
in order to reduce the noise sensitivity, to obtain accurate 
principal components of a set of data and to deal with the 
nonlinearity in variables. The NFRPCA model decreases the 
dimensionality of the original data by projecting it into a 
space with significantly fewer dimensions. It results in the 
principal events of nonlinear variability in a process. If any of 
the events change, it might be a result of a fault in the 
process. Moreover, NFRPCA uses a fuzzy covariance 
matrix instead of the traditional data covariance matrix in 
order to relieve the noise sensitivity and produces the 
diagnostic statistics based on the influence function. In the 
current work, we address problem of the fault detection in 
environmental processes representing the crop model so 
that the data are first modeled using the NFRPCA analysis 
algorithm and then the faults are detected using generalized 
likelihood ratio test. Generalized likelihood ratio 
(GLRT)-based NFRPCA is proposed to detect the faults 
when the data are first modeled with the NFRPCA. This 
NFRPCA presented here is derived from the nonlinear case 
of fuzzy principal component analysis algorithm introduced 
in (Gustafsson 1996) and it is investigated here as modeling 
algorithm in the task of fault detection (Nguyen and Widrow 
1990; Willsky et al., 1980). The NFRPCA is used to create 
the model and find nonlinear combinations of parameters 
which describe the major trends in a data set and GLRT is 
used to detect the faults and both are utilized to improve 
faults detection process. GLRT has been proposed in order 
to establish an adaptive system, which reaches three 
important problems; estimation, fault detection and 
magnitude compensation of jumps. GLRT is proposed for 
fault detection of different applications: geophysical signal 
segmentation (Willsky et al., 1980), signals and dynamic 
systems (Nguyen and Widrow 1990), incident fault detection 
on freeways (Dawdle et al., 1982), missiles trajectory 
(Tamura and Tsujita 2007). Therefore, in the current work it 
is proposed to benefit from the advantages of the GLRT 
(Mourad and Bertrand-Krajewski 2002), in order to improve 
the fault detection task in the cases where process model is 
not available. It is also compared to classical NFRPCA 

indices 
2T and Q . 

The rest of the paper is organized as the following. In 
Section 2, an introduction to NFRPCA is given, followed by 

descriptions of the two main detection indices, 
2T and Q , 

which are generally used with NFRPCA for fault detection. 
Then, the GLRT which is utilized in composite hypothesis 
testing is discussed in Section 3. After that, the NFRPCA 
based GLRT method used for detecting fault which 
integrates NFRPCA modeling and GLRT statistical testing, 
is shown in Section 4. Next, in Section 5, the GLRT-based 
NFRPCA      test      performance       is       studied      using  
 



  

 
 
 
 
environmental processes representing the crop model data. 
At the end, the conclusions are made in Section 6. 
 
I. NONLINEAR FUZZY ROBUST PRINCIPAL COMPONENT 

ANALYSIS (NFRPCA) 
 
Next, we present the classical principal component analysis. 
 
II.1. Principal Component Analysis (PCA) 
 

Let 
m

i RX ∈ denotes a sample vector of m  number of 

sensors. Also, assume there are n samples dedicated to 

each sensor, a data matrix 
nxmRX ∈  is with each row, 

displaying a sample. Meanwhile, X  matrix is scaled to zero 
mean for covariance-based PCA and at the same time, to 
unit variance for correlation-based PCA [13]. The X matrix 

can be divided into two matrices: a score matrix S  and a 

loading matrix W  through singular value decomposition 

(SVD): 
T

SWX =                    (1) 

where 
mxm

m RsssS ∈= ]...[ 21  is a transformed variables 

matrix, 
n

i Rs ∈ , are the score vectors or principal 

components, and  
mxm

RwwwW ∈= ]...[ 321 is an 

orthogonal vectors matrix 
m

i Rw ∈ which includes the 

eigenvectors associated with the covariance matrix of X , 

i.e., ∑ , which is given by 

TT
WWXX

n
Λ=

−
=∑

1

1
 (2) 

with n

TT
IWWWW =Λ=Λ  and Λ =diag(

1λ ,
2λ ,…, mλ ) 

is a diagonal matrix containing the eigenvalues related to 

the m PCs, mλ are simply the eigenvalues of the 

covariance matrix ( mλλλ ≥≥≥ ...21 ), and nI  is the 

identity matrix ([14]). It must be noted at this point that the 
PCA model yields same number of principal components as 

the number of original variables ( m ). Nevertheless, for 

collinear process variables, a smaller number of principal 

components ( l ) are required so that most of the variations 

in the data are captures. Most of the times, a small subset of 
the principal components (which correspond to the 
maximum eigenvalues) might carry the most of the crucial 
information in a data set, which simplifies the analysis. 
The effectiveness of the PCA model depends on the 
number of principal components (PCs) are to be used for 
PCA. Selecting an appropriate number of PCs introduces a 
good performance of PCA in terms of processes monitoring. 
Several methods for determining the number  of   PCs  have  
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been proposed such as; the Scree plot (Gustafsson 1996), 
the cumulative percent variance (CPV), the cross validation 
(Nguyen and Widrow 1990), and the profile likelihood 
(Willsky et al., 1980). In this study herein, the cumulative 
percent variance method is utilized to come up with the 
optimum number of retained principal components. The 
cumulative percent variance is computed as follows: 

100
)(

)( 1 ×
Σ

=
∑

=

trace
lCPV

l

i

iλ
  (3) 

When the number of principal components l is determined, 

then, the data matrix X  is shown as the following:

T
WWSSSWX ]
~ˆ][

~ˆ[== ,                                                   (4) 

where nxl
RS ∈ˆ  and )(~ lmnx

RS
−∈  are matrices of  l  

retained principal components and the ( lm − ) ignored 

principal components, respectively, and the matrices 
mxl

RW ∈ˆ  and )(~ lmmx
RW

−∈ are matrices of l retained 

eigenvectors and the ( lm −  ignored eigenvectors, 

respectively. Using Eq. (4), the following can be written: 
TT

WSWSX
~~ˆˆ +=   (5) 

The matrix X̂  represents the modeled variation 

of X  based on first l  components. 

 
Next, we present the nonlinear fuzzy robust principal 
component analysis, it is proposed to relate the nonlinear 
PCA learning rules to energy functions and proposed an 
objective function with the consideration of noise. 
 
II.2. Nonlinear Fuzzy Robust Principal Component 
Analysis (NFRPCA) 
 
The PCA might be affected by outliers and a several 
contributions have been proposed for robustification of PCA 
(Croux and Haesbroeck 2000; Heo et al., 2009). In addition, 
outliers are known to influence on the resulting principal 
component and hence they also have an impact on the 
modeling as well as fault detection performances. On the 
other hand, there are many fuzzy approachesin regression 
analysis which address this issue (Teppola et al., 1999; Xu 
and Yuille 1995), such that the fuzzy clustering which is an 
important technique to distinguish between the healthy and 
faulty structures and identify the structure in the data. To 
deal with the above problems, we propose to use the 

objective function J proposed in (Gustafsson 1996), where 

PCA learning rules are related to energy functions with the 
consideration of outliers: 
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The gradient descent rules at every instant of time t for 
estimating the weight W(t) is given by: 
 

))(()()1( tWJtWtW α+=+     (7) 

where, α is the learning rate for the objective function J . 

In the case where the size of the covariance matrix is large, 
it is better to solve the eigenvalue problem by iterative 
schemes which do not need to compute and store the 
covariance matrix. To compute iteratively the PCs, the 
developed iterated robust fuzzy principal component 
analysis proposes to use the following iterative rules, 
 
A. Fault detection indices 
 

When using PCA in detecting faults, a PCA model is built 
utilizing fault-free data. The model is used for fault detection 

through one of the detection indices (the Hotelling's 
2T

and Q  statistics), which are presented next. 

 

A.1 Hotelling's
2T statistic 

 

The 
2T statistic is a way of measuring the variation captured 

in the principal components at various time samples, and it 
is known as (Dawdle et al., 1982): 

XWWXT
TT ˆˆˆ 12 −Λ= ,                                                  (8) 

 

Where ),...,,(ˆ
21

1

ldiag λλλ=Λ−
, is a diagonal matrix 

containing the eigen values related to the l retained PCs. 

For new real-time data, when the value of 
2T  statistic 

exceeds the threshold, 
2

αT calculated as in (Dawdle et al., 

1982), a fault is detected. 

The threshold number used for the 
2T  statistic is computed 

as (Dawdle et al., 1982): 

αα ,,

2

1

)1(
lnlF

n

nl
T −

−

−
= ,                                                (9) 

where α  is the level of significance (α usually between 

%1  and %5 ), n is the number of samples in data 

set, l  is the number of retained PCs, and α,, lnlF − is the 

Fisher F  distribution with l  and ln−  degrees of freedom. 

These thresholds are computed using faultless data. When 

the number of observations, n, is high, the 
2T  statistic  

 
 

 
 
 
 

threshold is approximated with a 
2χ distribution 

with l degrees of freedom, i.e., 
2

,

2

αα χ lT = . 

A.2 Q statistic or squared prediction error (SPE) 
It is possible to detect new events by computing the squared 

prediction error SPEor Q  of the residuals for a new 

observation. Q  statistic(Tamura and Tsujita 2007; Jackson 

and Mudholkar 1979), is computed as the sum of squares of 
the residuals. Also, the Q  statistic is a measure of the 

amount of variation not captured by the PCA model, it is 
defined as (Tamura and Tsujita 2007): 

222

)ˆˆ(ˆ~
XWWIXXXQ

T−=−== .           (10)               

 
The monitored system, meanwhile, is accepted to be in 
normal operation if: 
 

αQQ≤ (11)The threshold αQ used for the Q statistic can 

be computed as (Luukka 2011), 
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αc is the value of the normal distribution with α  is the level 

of significance at the instant of an unusual event, when there 
is a change in the covariance structure of the model,    this 
change is going to be detected by a high value of Q .  For 

new data, the Q statistic is computed and compared to the 

threshold αQ (Luukka 2011). This means a fault is detected 

when the confidence limit is violated. The threshold value is 
computed on the assumption that the measurements are 
independent of time and they are multivariate normally 
distributed. The Q fault detection index is highly sensitive to 

errors in modeling and the performance of it is dependent on 

the number of retained PCs, l ,(Zhu and Ghodsi 2006). 

 
II. GENERALIZED LIKELIHOOD RATIO TEST (GLRT) 
 

The faults detection step is done using the residuals 
computed using PCA. Using the information about the noise 
distribution of the residuals, a GLR test statistic is formed. 
To make the decision if a fault is present or not, the test 
statistic is compared to a threshold from 
the chi-square distribution. 
A. Test Statistic 
The GLR test is famous to be a uniformly most powerful test 
among all invariant tests (shown in Equation (10)). It is 
basically a hypothesis testing technique   which   has    been  



  

 
 
 
 
utilized successfully in model-based faults detection (Bulut 
et al., 2005). Focusing on the following fault detection 

problem, 
nRY ∈ is an observation vector formed by one of 

the two Gaussian distributions: ),0( 2

nIN σ

or ),0( 2

nIN σθ ≠ , where θis the mean vector (which is 

the value of the fault) and 02
fσ is the variance (assumed 

to be known in this problem). The hypothesis test can be 
shown as:

 







=

=

).hypothesis ealternativ)}(,(~{

);hypothesis null()},0(~{

2

1

2

0

n

n

INYH

INYH

σθ

σ
(13) 

Here, the GLR method replaces the unknown parameter, θ, 

by its maximum likelihood estimate. This estimate is 
computed by maximizing the generalized likelihood 
ratio )(YΤ as shown below: 
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where YY =−=
2

2
minargˆ θθ is the maximum likelihood 

estimate of θ , the probability density function of Y is 
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2
.  represents the Euclidean 

norm. Because the GLR test utilized the ratio of distributions 
of the faulty and faultless data; for the case 
of non-Gaussian variables, non-Gaussian distributions are 
required to be utilized. It must be noted that, in the derivation 
mentioned above, maximizing the likelihood function is 
equivalent to maximizing its natural logarithm since the 
logarithmic function is a monotonic function. At this stage, 

the GLR test then decides between the hypotheses 0H

and 
1H as follows: 



 Τ

.else

t(Y) if

1

0

H

H αp
(15) 
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Since distribution of the decision function (Y)Τ under 0H

allows to design a statistical test with a desired false alarm 

rate, α, where the threshold αt  is chosen to satisfy the 

following false alarm probability: 
 

αα =≥Λ )t(Y)(0P                 (16) 

where, )(0 AP  represent the probability of an 

event A  when Y  is distributed according to the null 

hypothesis 0H  and α  is the desired probability of the 

false alarm. Since Y  is normally distributed, the 

statistics Τ  is distributed according to the 
2χ  law with 

)( lm −  degrees of freedom.  

B.  Statistic 
To select an appropriate thresholds for the test statistics 
shown above, it is crucial to find their distributions. For that 
purpose, with the Gaussian noise within, the test statistics 
will be chi-square distributed variables ([22]). The 

normalized residual R is distributed as 

),(~ 2

nINR σθ ,                                                          (17) 

where 0=θ under the null hypothesis (15). Then, the test 

statistic is distributed as the non-central chi-square 
distribution as shown below: 

{ } ,~
1 22

22 nYt χ
σ

α = (18) 

and the test statistic is distributed through the central 

chi-square distribution 
2

nχ  with degree of freedom n. The 

threshold is now chosen from the chi-square distribution 
therefore the fault-free hypothesis is erroneously rejected 
with only a small probability. 
III. FAULT DETECTION USING A GLR-BASED NFRPCA TEST 
In this section, a GLR test to detect faults is derived, and its 
explicit asymptotic statistics computed using PCA. The 
objective of the GLR-based PCA fault detection technique is 

to detect the additive fault, θ, with the maximum detection 

probability for a given false alarm. Here, the fault detection 
task can be considered as a hypothesis testing problem with 
consideration of two possible hypotheses: null hypothesis of 

no change 0H , where measurements vector X , 

is fault-free, and the change-point alternative hypothesis 

1H , where X  contains a fault, and thus X  is no longer 

categorized by the fault-free PCA model (4). For new data, 

the method needs to pick between 0H  and 
1H  for the 

most efficient detection performance. In the absence of a 
fault, the residual can be calculated as follows, 

XXR ˆ−= ,                                                             (19) 
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while in the presence of an additive fault vector, θ , the 

residual is computed as, 

][ˆ θ+−= XXR (20) 

It is assumed that the residual in Equation (19) is Gaussian. 
Hence, the fault detection problem consists of detecting the 

presence of an additive bias vector, θ , in the residual 

vector, R . The residual vector can be considered as a 
hypothesis testing problem by focusing on two hypotheses: the 

null hypothesis 0H , where R  is fault-free and the alternate 

hypothesis 
1H , where R  contains a fault. The formulation of 

the hypothesis testing problem can be written as, 
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2
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The algorithm which studies the developed GLR-based PCA 
fault detection technique is presented in Algorithm 1. The GLR- 
based PCA is proposed to detect the faults in the residual 
vector obtained from the PCA model, through which the GLR 

test is used for each residual vector, R . 
 
Algorithm 1: GLR-based NFRPCA fault detection algorithm. 

Input:  mN × data matrix X , Confidence interval α  

Output: GLR statistic Τ , GLR Threshold αt  

• Data preprocessing step: 
Standardize: computes data's mean and standard deviation, 
and standardize it; 

• NFRPCA running step: 

Compute the covariance matrix, Σ ; 

Calculate the eigen values and eigenvectors of Σ  and sort 
the eigen values in decreasing order;  
Compute the optimal number of principal components to be 
used using the CPV method;  
Compute the sum of approximate and residual matrices; 
Testing step: 
Standardize the new data; 

Generate a residual vector, R , using NFRPCA; 

Compute the GLR statistic T for the new data;  

Compute the GLR statistic threshold αt : if αt≥Τ , then 

declare a fault. 
 
SIMULATION RESULTS ANALYSIS 
 
Next, the crop model that are used to generate data is 
described. 
 
A. Crop model 
 
 
 

 
 
 
 
The original data were issued from experiments carried out on 
a silty soil in Belgium, with a wheat crop (Triticum aestivum L., 
cultivar Julius), during the crop seasons 2008-2009 and 
2009-2010. The measurements were the results of 4 
repetitions by date, each one of them being performed on a 
small block (2m times 6m) randomly spread over the field to 
ensure the measurements independence. A wireless 
monitoring system (eKo pro series system, Crossbow) 
completed by a micro-meteorological station was used for 
measuring continuously soil and climate characteristics. 
Especially, the measurements of soil water content were 
performed at 20 and 50 cm depth. The plant characteristics 
(LAI and biomass) were measured at regular intervals (2 
weeks) along the crop seasons, since the middle of February 
(around Julian day 410) till harvest. Each LAI and biomass 
measurements were the results of four replicates by date of 
sampling. The LAI is defined as one half of the total leaf area 
per unit ground surface area (Jolli?e et al., 2002). Each LAI 
sample was collected as a 50 cm linear sample (for a total of 2 
meters considering four replicates). The stripped leaves were 
sticked on a paper sheet and digitalized (Chen et al., 1996). 
The images were segmented using the Meyer and Neto (2008) 
indices (ExG-ExR) to compute the total green leaf area and the 
LAI was finally computed as the ratio between this value and 
the soil reference surface (2 meters times 0.146 meter of 
inter-row spacing). Each biomass measurement was 
performed on three adjacent rows of 50 cm (for a total of 6 
meters considering the four replicates). The cut samples were 
dried at laboratory and the total mass was finally weighed. 
During the season 2008-2009, yields were quite high and close 
to the optimum of the cultivar. This is mainly explained by the 
good weather conditions and a sufficient nitrogen nutrition 
level. The season 2009-2010 was known to induce deep water 
stresses, and was thus characterized by yield losses. The 
model for which the methods are tested is Mini-STICS model 
(Croux and Haesbroeck 2000). 

The model equations are presented in (Heo et al., 2009), and 
the model parameters presented (Teppola et al., 1999). The 
dynamic equations indicates the way each state variable 
changes from one day to another as a function of the current 
values of the state variables, and of the parameters value. 
Encoding these equations over time allows for eliminating the 
intermediate values of the state variables and relate the state 
variables at any time to the explanatory variables on each day. The 
model structure can be derived from the basic conservation laws, 
namely material and energy balances (Mourad and 
Bertrand-Krajewski 2002). 
 
B. Data generation 
 
Indeed, the findings might depend on the details of the model, on 
the way/quality the data are generated/measured with and on the 
specific data which was used. To be independent of these 
consideration, we are generate dynamic data from the crop model. 
The model is first used to simulate the responses of the 6 state 
variables: the leaf-area index LAI; LAI, the biomass growth; 
MASEC, the grain yield MAFRUIT, the volumetric water content of 
the soil layer1; HUR1, the volumetric water content of the soil layer 
2; HUR2, the volumetric water content of the soil layer 3;HUR3 as 
functions       of         time           of   the     first   recorded    climatic 
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Figure 1.Original data 

 

 
 

Figure 2.Training fault-free data 

 
 
variable of the crop season 2008-2009. These simulated 
states are assumed to be noise free. They are then 
contaminated with zero mean Gaussian errors, i.e., a 
measurement noise v). The data set consists of 8 random 
variables, which are generated using the crop model 
presented in (Heo et al., 2009, Mansouri et al., 2014). The 
generated data were arranged as a matrix X having 297 
samples and 6 crop model measurements. The responses 
of the 6 state variables LAI, MASEC, MAFRUIT, HUR1, 
HUR2 and HUR3, are shown in Figure 1(Mourad and 
Bertrand-Krajewski 2002). 
 

C.  Training of NFRPCA model 
 

As described in Algorithm 1, the NFRPCA -based GLR fault 
detection method requires constructing a NFRPCA model 
from fault-free data. Therefore, the fault-free crop model 
training data described earlier were used to construct a 
NFRPCA reference model to be used in fault detection. The 

fault-free crop model data were arranged as a matrix Xtr
having 150 rows (samples) and 6 columns (crop model 
measurements). These data are first scaled (to have zero 
mean and unit variance), and then are used to construct the 
NFRPCA model.  The responses of the training fault-free 
data, are shown in Figure 2.   The   training   fault-free   data  
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matrix is used to construct a NFRPCA model. In NFRPCA, 
most of the crucial variations in the data set are typically 
captured in the main principal components corresponding to 
the maximum eigen values as shown in Figure 3. In this 
study herein, the cumulative percent variance (CPV) 
method is utilized to find out the optimum number of retained  
 
 

 
 
 
 
principal components. Utilizing a CPV threshold value of 

%90 , only the first five principal components of the total 

variations in the data as displayed in Figure 3 will be 
retained. A plot of the decision   function   of   the   GLR test  
 
 

 

 
 

Figure 3. Variance captured by each principal component 
 

 
 

Figure 4. The time evolution of GLR decision function on a semi-logarithmic scale for the fault-free data 

 
 
(shown in Figure 4) confirms that the process operates 
under normal conditions, where no faults are present. 
 
D. Fault detection in crop model 
 

The NFRPCA model formed utilizing the fault-free data is 
deployed in this section to detect possible faults with unseen 

testing data. Now, the performances of the different fault 
detection indices will be assessed. To show the abilities of 
NFRPCA-based GLRT technique in terms of fault detection, 

we have compared it to the NFRPCA indices 
2T  and Q , 

through three different cases of faults, i) an additive fault 

(single fault) was introduced in 
1X , it consists of a   bias   of  



  

 
 
 
 

amplitude equal to 20% of the total variation in 
1X , between 

sample numbers 30 and 80, ii) a double faults were 

introduced in 
1X  and 

2X and iii) multiple faults were 

introduced in 
1X  to 

2X . Based on the first three PCs, 

NFRPCA-based Q , NFRPCA-based 
2T  and 

NFRPCA-based   GLRT    techniques   are   used   for  fault  
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detection (as shown in Figures 6, 7 and 8) in the presence of 

a single fault in 
1X . The results of NFRPCA-based Q

statistic is shown in Figure 6, where the dotted line 
represents the detection threshold

αQ , which is found to 

be0.6848. 
 
 
 

 
 

 
 

Figure 5. Testing faulty data testX . 

 

 
 

Figure 6.Fault detection using Q statistic in the presence of simple fault. 
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Figure 7 presents the results of the NFRPCA-based 
2T  

statistic, where the dotted line represents the detection 

threshold
2T ,

2

αT , which is found to be 9.7. When the 

NFRPCA-based GLRT is applied using the same fault-free 

data, the GLRT threshold value is found to be αt = 553.1 for 

a false alarm probability of α  = 5%. We can show from 

Figure 5, that, unlike the NFRPCA-based 
2T  statistic which 

results in some missed detections, both NFRPCA-based 

Q and NFRPCA-based GLRT methods are able to detect 

the fault effectively (see Figures 6 and 8). The fault is 
identified at the interval [30 . . . 80] by parallel test of residual 
subspace (as shown in Figure 5). 

Double faults in state variable X1 are introduced at the 
intervals [30 . . . 80] respectively. These faults are 
represented by a constant bias of amplitude equal 20% of 

the total variation in 
1X . We can show from Figures 9, 10 

and 11 the results using NFRPCA-based Q, 

NFRPCA-based 
2T  and NFRPCA-based GLRT techniques 

for faults detection. Figure 9 shows the ability of 

NFRPCA-based Q , NFRPCA-based 
2T  and 

NFRPCA-based GLRT techniques to detect these additive 
faults, with some missed detections when using the 

NFRPCA-based 
2T  and Qstatistics (as shown in Figures9 

and 10).  
 
 

 

 
 

Figure 7.  Fault detection using Hotelling's 
2T -statistic in the presence of simple fault. 

 
 

 
 

Figure 8. Fault detection using GLR statistic in the presence of simple fault 
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Figure 9.  Fault detection using Q-statistic in the presence of double faults. 

 
 

 
 

                   Figure 10.  Fault detection using Hotelling's 
2T -statistic in the presence of double faults 

 

 
 

Figure 11. Fault detection using GLR statistic in the presence of double faults. 
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Figure 12.  Fault detection using Q-statistic in the presence of triple faults. 

 

 
 

Figure 13.  Fault detection using Hotelling's 
2T -statistic in the presence of triple faults. 

 
 

 
 

Figure 14. Fault detection using GLR statistic in the presence of triple faults. 
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The same results are drawn when multiple faults are 

introduced in 
1X at the intervals [30 . . . 80]. Figures 12, 13 

and 14 show that, unlike the NFRPCA-based Q and 

NFRPCA-based 
2T  methods which result in some false 

alarms(see Figure 12) and missed detections (see Figure 
13), the NFRPCA-based GLRT method is able to detect the 
multiple faults without any false alarms (as shown in Figure 
14).  
 
CONCLUSION 
 

In this work, we used nonlinear fuzzy robust principal 
component analysis (NFRPCA)-based generalized 
likelihood ratio test (GLRT) for nonlinear fault detection. The 
fault detection problem was addressed so that the data are 
first modeled using the NFRPCA method and then the faults 
are detected using GLRT. The NFRPCA method is 
investigated here as modeling algorithm in the task of fault 
detection. The idea is to improve the GLRT performance 
introducing modeling of the data using the NFRPCA. The 
NFRPCA method has been proposed to deal with an online 
are tensions of PCA and provide a good performance over 
the linear versions. The NFRPCA-based GLRT fault 
detection performance is assessed and compared to that of 
the conventional NFRPCA through crop model data. The 
results demonstrate the effectiveness of the 
NFRPCA-based GLRT technique over the conventional 

NFRPCA through its two charts 
2T  and Q for detection of 

single as well as multiple sensor faults. 
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