Spatial Variability in Soil Properties and Plant Nutrient of Paddy Rice in Mwea, Kenya

Kundu C.A. 1, 2T. Masunaga, 2K. Sato, 2M. Ishii, 3A.Yamauchi, 4D. Makihara and 5R.K. Wanjogu

1Kenya Agricultural and Livestock Research Organization (KALRO), Box 169-50100, Kakamega, Kenya
2Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-cho, Matsue city, Shimane 690-8504, Japan
3Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
4International Co-operation Centre for Agricultural Education (ICCAE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
5Mwea Irrigation Agricultural Development Centre (MIAD), Box 210-10303, Wang’uru, Kenya

Accepted 02 June, 2019

Lowlands constitute major environment for rice cultivation in Kenya, but declining soil productivity has led to low poor quality yields. This study assessed soil and yield quality of rice in Mwea irrigation scheme. Surface 0-15cm soil was sampled for laboratory analysis. Rice straw and grain was collected and analysed for total nutrient. Results obtained for soil and plant were evaluated basing on nutrient guidelines for rice. Results indicated that soil pH was moderately high and salt concentration negligible (< 0.4 dS/m). Soil total carbon was moderately high while total nitrogen was low. Available phosphorus, sulphur and silica all exceeded deficiency level for rice. Exchangeable Ca$^{2+}$ and Mg$^{2+}$ dominated compared to exchangeable K$^+$ and Na$^+$; and as a result severe K$^+$ deficiency because of cation imbalance existed. Among micronutrients, soil Fe, Mn and Cu were high while Zn was deficient. Grain yields were below optimum and plant analyses revealed deficiencies in straw total sulphur, K and Ca in some units. Grain samples showed deficiency in total Ca, Fe, K, Mg and S. Soil condition and nutrient concentrations affected nutrient accumulation in straw and grain. Appropriate soil management practices should be considered for improved quality and quantity of yields.

Keywords: Cation imbalance, lowlands, Mwea irrigation scheme, soil nutrient

INTRODUCTION

Low productivity of food crops because of little or no nutrient application in Sub-Saharan Africa (SSA) contributes to food insecurity (Shapouri et al., 2010). Although mineral fertilizers are widely used globally, their use remains low (IFDC, 2006). The fertilizer is not targeted to specific crop, soil and agro-ecological conditions and application rates are ‘blanket’ (Giller et al., 2011). Importance of rice has increased in SSA (Seck et al.,...
In Kenya, demand exceeds production and the gap is filled through huge and costly imports. Current production meets 20% of total demand and consumption projected to rise with increasing population and changes in eating habits (Atera et al., 2011). To attain self-sufficiency, total domestic production must increase at 9.3% per annum (Ministry of Agriculture, 2008). Stakeholders must understand impediments that exist along rice value chain and import process and explore opportunities to benefit all (Atera et al., 2018).

Plant growth and development is reliant on nutrient from soil and nutrients present in tissues is dependent on demand and soil availability (Marschner, 2012). Humans require nutrients obtained from daily diets. Unfortunately, majority of plant derived food contains low bioavailable nutrients. Current high yielding white rice though a major staple food and energy source is poor in essential micronutrients such as Zn (Sharma et al., 2013).

Variability in soil and yield exist which may lead to site-specific management (Shoji et al., 2005). Grain quality after yield is important for rice production and nutritional quality is considered as one of the main objectives for rice improvement (Ning et al., 2009).

In Kenya’s rice production systems, fertilization is restricted to N and P (Kihoro et al., 2013) and relationship between soil minerals and grain quality has not received any attention. This work aimed at analysing soil nutrient supplying power and its effect on nutrient accumulation in Kenya’s irrigated rice system.

MATERIALS AND METHODS

Mwea irrigation scheme is located on lower slopes of Mt. Kenya in Central Kenya (Figure 1). Total area is 12,282ha with about 9,000ha under rice production. It is divided into five units; Mwea, Thiba, Wamumu, Karaba and Tebere located at different topographical elevation. The scheme gets water from two rivers; Nyamindi; serving Tebere and Thiba serving Mwea, Thiba, Wamumu and Karaba (Figure 1).

Surface 0-15cm soil was collected from benchmarked farms and analysed for pH, electrical conductivity (EC), total carbon (TC), total nitrogen (TN), available silica (SiO₂), available sulphur (S), available phosphorus (P₂O₅), available micronutrients and exchangeable cations using standard procedures.

At harvesting, straw and grain samples were collected from the same fields and analysed for total elements. They were digested in HNO₃ according to Koyama and Sutoh, (1987) and concentrations determined by Inductively Coupled Plasma-Atomic Spectroscopy (ICPE-9000, Shimadzu).

Statistical Analysis

Data were subjected to analysis of variance using R software version 3.4.0 for windows and statistically significant differences between means compared at 5% level using Duncan Multiple range test. Soil and plant nutrient concentrations were evaluated basing on guidelines for rice.
RESULTS AND DISCUSSIONS

Soil Properties

Mean values for soil properties are presented in Table 1. Soil pH is a driver of soil fertility because it influences availability and uptake of nutrients and toxins (Brady and Weil, 2014). Soil pH increased down the elevation from Mwea to Karaba (Table 1). This high soil pH is attributed to basaltic parent material and dry climate as reported in earlier studies (Kondo et al., 2001). Values of 5.5 to 7.0 are appropriate for provision of nutrients in grain and vegetable crops (Brady and Weil, 2014) therefore values observed are appropriate.

EC was low and increased down the elevation thus considered non-saline. Results revealed low TN and moderate TC that decreased down elevation (Table 1). N supply limits grain yield and demand for other macronutrients in rice (Dobermann et al., 1998). Moderate soil TC observed could be due to stubble and low TN because of low rates and improper application methods that lead to N losses despite widespread use of N fertilizers. Effluents from rice fields indicated high nitrates (>5mg/l) according to Onderi, (2016), an indication of N loss in irrigation water. A common practice of residue removal (Kondo et al., 2001) exacerbates N loss.

Available P$_2$O$_5$, S, SiO$_2$, Fe, Mn and Cu exceeded deficiency level. High S concentration observed is attributed to widespread use of ammonium sulphate fertilizers (Kihoro et al., 2013). Studies on clays by Muriithi et al., (2012) indicated 42-50% silica, thus high SiO$_2$ content.

Exchangeable Ca$^{2+}$ and Mg$^{2+}$ dominated and exceeded deficiency level while K$^+$ was deficient in Mwea and Thiba (Table 1). Cations increased down the elevation due to accumulation in lower depression area. Cation imbalance was evident and severe in Mwea and Thiba. K fertilizers are seldom used, and straw removal exacerbates K deficiency. Zn was below deficiency level because micronutrient fertilizers are hardly used and thus need to introduce Zn-based fertilizers.

Straw and Grain yield

Straw and grain yield ranged from 2.4 to 8.7t/ha and 3.3 to 8.2t/ha respectively. Mean values for straw and grain yield are shown in Table 2. Yields decreased down the elevation with higher yields observed in Thiba unit and lowest in Karaba (Table 2). Grain yield was lower than potential yield of 10t/ha according to Ministry of Agriculture, (2008).
Table 2: Mean straw and grain yield

<table>
<thead>
<tr>
<th>Unit</th>
<th>Straw (t/ha)</th>
<th>Grain (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mwea</td>
<td>5.0^ab</td>
<td>5.8^ab</td>
</tr>
<tr>
<td>Thiba</td>
<td>6.2^a</td>
<td>6.8^a</td>
</tr>
<tr>
<td>Wamumu</td>
<td>5.1^ab</td>
<td>5.6^ab</td>
</tr>
<tr>
<td>Karaba</td>
<td>4.4^b</td>
<td>5.0^b</td>
</tr>
<tr>
<td>Tebere</td>
<td>5.4^ab</td>
<td>5.6^ab</td>
</tr>
<tr>
<td>Overall mean</td>
<td>5.1</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Means followed by the same superscript letter in a column are not significant at 5% level

Table 3: Mean straw total nutrient concentration

<table>
<thead>
<tr>
<th>Total nutrient (%)</th>
<th>Deficiency level*</th>
<th>Mwea</th>
<th>Thiba</th>
<th>Wamumu</th>
<th>Karaba</th>
<th>Tebere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>0.0030</td>
<td>0.0059^a</td>
<td>0.0042^b</td>
<td>0.0052^ab</td>
<td>0.0044^ab</td>
<td>0.0045^ab</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0003</td>
<td>0.0024^a</td>
<td>0.0022^a</td>
<td>0.0026^a</td>
<td>0.0019^b</td>
<td>0.0012^b</td>
</tr>
<tr>
<td>Fe</td>
<td>0.0350</td>
<td>0.1045^a</td>
<td>0.0581^b</td>
<td>0.1509^a</td>
<td>0.0967^a</td>
<td>0.1303^a</td>
</tr>
<tr>
<td>Mn</td>
<td>0.0450</td>
<td>0.0590^b</td>
<td>0.0926^ab</td>
<td>0.0869^ab</td>
<td>0.0802^b</td>
<td>0.0822^a</td>
</tr>
<tr>
<td>P_2O_5</td>
<td>0.1000</td>
<td>0.3303^a</td>
<td>0.2448^a</td>
<td>0.3092^a</td>
<td>0.2139^a</td>
<td>0.2416^a</td>
</tr>
<tr>
<td>S</td>
<td>0.0750</td>
<td>0.0696^b</td>
<td>0.0864^b</td>
<td>0.0857^b</td>
<td>0.0840^b</td>
<td>0.0896^b</td>
</tr>
<tr>
<td>K</td>
<td>1.4000</td>
<td>0.6619^c</td>
<td>0.6858^c</td>
<td>1.4574^ab</td>
<td>1.5985^bc</td>
<td>1.6725^a</td>
</tr>
<tr>
<td>Mg</td>
<td>0.2000</td>
<td>0.2687^ab</td>
<td>0.2280^b</td>
<td>0.2729^ab</td>
<td>0.2850^b</td>
<td>0.3028^a</td>
</tr>
<tr>
<td>Ca</td>
<td>0.3000</td>
<td>0.2793^a</td>
<td>0.2511^a</td>
<td>0.3266^a</td>
<td>0.3828^a</td>
<td>0.3244^a</td>
</tr>
</tbody>
</table>

*Dobermann and Fairhurst (2000)

Means followed by the same letter in a row are not significantly different at 5% level

Straw and grain nutrient content

Average total straw and grain nutrient contents are shown in Tables 3 and 4 respectively with deficiency level according to Dobermann and Fairhurst, (2000).

For nutrients to accumulate in straw, they are taken from soil through transpiration stream (Sperotto, 2013). This depends on nutrient availability, soil condition and plant factors. Most nutrients exceeded deficiency level in straw except for total S in Mwea and total K and Ca in Mwea and Thiba (Table 3). Positive associations between soil and straw nutrient accumulations were observed except Zn which showed high straw accumulation despite being deficient in soil.

Accumulation in edible parts occurs through redistribution of accumulated nutrients or continuous soil uptake. Phloem transport from old to new leaves is involved and depends on element mobility (Sperotto, 2013). Accumulation in edible parts is therefore influenced by the amount of nutrients absorbed from the soil and the rate of translocation to the edible parts. Most nutrients exceed the deficiency level in straw except for total S in Mwea and total K and Ca in Mwea and Thiba (Table 3).

Remobilization moves nutrients to developing seeds provided senescence and seed import are synchronized to provide source-sink relationships (Waters and Sankaran, 2011).

High grain phosphorus could have come from continuous soil uptake and remobilization. Sulphur is less mobile and its deficiency reduces grain yield and quality by 10-40% without visible symptoms (Khurana et al., 1999). Pot experiments revealed S deficiency indicated by N:S ratios of 16 and 25 significantly affect grain quality (Randall et al., 2003). Enhancing N nutrition to reduce N:S ratio could help improve S accumulation in grain. Increased S application after anthesis enhanced its accumulation in grain (Randall et al., 2003), thus need to properly time S application.

Low grain Mg (<0.15%) could be attributed to binding by phytic acid known chelate metal cations (Raboy, 2009). Unbalanced crop fertilization with N:P:K reduces Mg in seeds (Guo et al., 2016), thus balanced crop nutrition should be considered. Grain total K was below deficiency level because of cation imbalance that negated its uptake and accumulation. Since K, Mg and P accumulate in the aleurone layer (Ogawa et al., 1979), it is likely that phytic acid complexes them.

Grain Zn was high because it is loosely bound and localized in aleurone layer and inner endosperm thus not masked by phytic acid. Similarly, Cu passes the aleurone layer without being captured by phytic acid (Iwai et al., 2012). Prolonged submerged conditions, low soil Zn and N negate Fe uptake and accumulation.
obtained but of poor quality. and K nutrient status. Reasonable grain yields were high nutrient supplying power with deficiencies in N, Zn and natural resource management. Soil results indicated Spatial variability in soil properties plays a role in modeling CONCLUSIONS this on Mwea soils and Kenyan rice varieties. Further research into this aspect is necessary to elucidate means followed by the same letter in a row are not significantly different at 5% level We are indebted to JST and JICA for funding through SATREPS. Many thanks to rice farmers in Mwea, entire KALRO and MIAD.

REFERENCES

Table 4: Mean grain total nutrient concentration

<table>
<thead>
<tr>
<th>Total nutrient(%)</th>
<th>Deficiency level*</th>
<th>Mwea</th>
<th>Thiba</th>
<th>Wamu</th>
<th>Karaba</th>
<th>Tebere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>0.0020</td>
<td>0.0050a</td>
<td>0.0044a</td>
<td>0.0045b</td>
<td>0.0046ab</td>
<td>0.0044b</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0010</td>
<td>0.0017ab</td>
<td>0.0016ab</td>
<td>0.0019a</td>
<td>0.0013b</td>
<td>0.0018ab</td>
</tr>
<tr>
<td>Fe</td>
<td>0.0250</td>
<td>0.0085a</td>
<td>0.0086a</td>
<td>0.0097a</td>
<td>0.0134a</td>
<td>0.0119a</td>
</tr>
<tr>
<td>Mn</td>
<td>0.0050</td>
<td>0.0083b</td>
<td>0.0112a</td>
<td>0.0092ab</td>
<td>0.0080b</td>
<td>0.0086ab</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.2000</td>
<td>0.6915a</td>
<td>0.6133a</td>
<td>0.6475b</td>
<td>0.6347b</td>
<td>0.6454b</td>
</tr>
<tr>
<td>S</td>
<td>0.1000</td>
<td>0.0751ab</td>
<td>0.0731ab</td>
<td>0.0734b</td>
<td>0.0729b</td>
<td>0.0790ab</td>
</tr>
<tr>
<td>K</td>
<td>0.2900</td>
<td>0.1844abc</td>
<td>0.1705c</td>
<td>0.1901ab</td>
<td>0.1755bc</td>
<td>0.1977a</td>
</tr>
<tr>
<td>Mg</td>
<td>0.1500</td>
<td>0.1285a</td>
<td>0.1182ab</td>
<td>0.1219b</td>
<td>0.1192b</td>
<td>0.1220b</td>
</tr>
<tr>
<td>Ca</td>
<td>0.0500</td>
<td>0.0393a</td>
<td>0.0385a</td>
<td>0.0395a</td>
<td>0.0369a</td>
<td>0.0342a</td>
</tr>
</tbody>
</table>

Dobermann and Fairhurst (2000)

Means followed by the same letter in a row are not significantly different at 5% level

According to Shi et al., (2012), N nutrition showed positive effect on Fe and Zn translocation. Additional and timely N supply in wheat enhanced grain Fe and Zn (Slamet-Loodin et al., 2015) because of increased protein and sink strength. Therefore timely and appropriate N nutrition should be considered to enhance grain Fe and Zn. In Wang et al., (2014), Zn fertilization with alternative wet and drying decreased phytic acid and increased yield. Further research into this aspect is necessary to elucidate this on Mwea soils and Kenyan rice varieties.

CONCLUSIONS

Spatial variability in soil properties plays a role in modeling and natural resource management. Soil results indicated high nutrient supplying power with deficiencies in N, Zn and K nutrient status. Reasonable grain yields were obtained but of poor quality.

RECOMMENDATIONS

An improvement in limiting nutrients like N, Zn and K at appropriate time could help avert the negative effects reflected in grain yield and quality. Appropriate field practices like mid-season drainage could also help in nutrient availability and uptake.

ACKNOWLEDGEMENT

We are indebted to JST and JICA for funding through SATREPS. Many thanks to rice farmers in Mwea, entire KALRO and MIAD.

