Global Advanced Research Journal of Agricultural Science (GARJAS) ISSN: 2315-5094
January 2019 Vol. 8(1): pp. 040-049
Copyright © 2019 Global Advanced Research Journals



Fate and Transport of Antibiotics and ARG’s in the Agri-food System

P. O. Danso1, Y.S. Yang1 2*, N. Cao3

1 Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, Jilin China

2 Key Laboratory of Regional Contaminated Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang 110044, China.

3 Laboratory of Agricultural Resource and Environment (Jilin University), Ministry of Education, Changchun 130062, Jilin China

*Corresponding Author's Email:

Accepted 26 January, 2019



Antibiotics and agriculture are both essential for life. Antibiotics are used in humans, animals and plants for disease control and cure and agriculture provide food for the world. Antibiotics have long been used in agriculture for as long as they have been available to farmers. The use of antibiotics in agriculture has by several works of literature and research said to be counterproductive. The transport and fate of antibiotics in the food ecosystem poses a threat of induced antibiotic resistance genes and antibiotic-resistant bacteria which is a major environmental and health issue. This review article discusses the accumulation of findings that address aspects of fate and transport with emphasis on the Agri-food system.

Keywords: Antibiotics, Antibiotic resistant bacteria, Antibiotic resistant genes.





REFERENCES (n.d.) (2018). Antibiotics use in agriculture. [online] Available at: [Accessed 18 Dec. 2018].

Agrios GN (1997). Plant Pathology, 4th Edition. Academic Press, San Diego.

Aminov RI (2009). The role of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 11:2970–2988

Aminov RI (2010). A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future. [online] Front Microbiol. Available at: [Accessed 24 Nov. 2018].

Aminov RI, Mackie RI (2007). Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett. 271, 147–161. doi:10.1111/j.1574-6968.2007.00757.x

Antibiotic Research UK. (n.d.). Antibiotic Research UK - The problem explained. [online] Available at: [Accessed 29 Dec. 2018].

Apley MD, Bush EJ, Morrison RB, Singer RS, Snelson H (2012). Use Estimates of In-Feed Antimicrobials in Swine Production in the United States. Foodborne Pathogens and Disease. 9, (3), 272-279.

Araujo SI, ATS, Tacao M, Patinha C, Alves A, Henriques I (2017). Characterization of antibiotic resistant and pathogenic Escherichia coli in irrigation water and vegetables in household farms. Int J Food Microbiol. 257, 192-200.

Armon RH, Starosvetsky J (2015). Point source pollution indicators. In: Armon, RH and Hänninen, O (eds) Environmental Indicators. New York City, NY, USA: Springer, pp. 495–499.

Ashbolt NJ, Amezquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, Lawrence JR, Larsson DG, Mcewen SA, Ryan JJ, Schonfeld J, Silley P, Snape JR, Van Den Eede C, Topp E (2013). Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives. 121: 993–1001.

Auerbach EA, Seyfried EE, McMahon KD (2007). Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res. 41,1143–1151. doi:10.1016/j.watres.2006.11.045

Avisar D, Lester Y, Ronen D (2009). Sulfamethoxazole contamination of a deep phreatic aquifer. Sci Total Environ 407(14), 4278-4282.

Baquero F, Martinez JL, Canton R (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology19: 260–265.

Bartelt-Hunt S, Snow DD, Damon-Powell T, Miesbach D (2011). Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. Journal of Contaminant Hydrology. 123, (3-4), 94-103.

Bhutta Z (nd). Presentation at the Global Need for Effective Antibiotics - Moving towards Concerted Action. opening-session-zulfiqar-bhutta.pdf

Boucher HW, Talbot GH, Benjamin DK, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D  (2013). "10 x '20 Progress--Development of New Drugs Active Against Gram-Negative Bacilli: An Update From the Infectious Diseases Society of America". Clinical Infectious Diseases. 56 (12): 1685–1694. doi:10.1093/cid/cit152. ISSN 1058-4838. PMC 3707426. Retrieved 6 September 2018.

Bouki C, Venieri D, Diamadopoulos E (2013). Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf. 91, 1–9. doi:10.1016/j.ecoenv.2013.01.016

Burridge L (2010). „Chemical use in salmon aquaculture: A review of current practices and possible environmental effects“. In: Aquaculture. Elsevier B.V. 306 (14), pp. 7-23.

Campagnolo ER, Johnson KR, Karpati A, Rubin CS, Kolpin DW, Meyer MT, Esteban JE, Currier RW, Smith K, Thu KM, McGeehin M (2002). Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Science of the Total Environment. 299, (1-3), 89-95.

Centers for Disease Control and Prevention (2018). What Exactly is Antibiotic Resistance?. [online] Available at: [Accessed 23 Nov. 2018].

Centers for Disease Dynamics, Economics & Policy (2015).  State of the World’s Antibiotics. CDDEP: Washington, D.C.

Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, Maxwell S, Aminov RI(2009). J Environ Qual. 38(3):1086-108. doi: 10.2134/jeq2008.0128.

Como G, Coci M, Giardina M, Plechuk S, Campanile F, Stefani S (2014). Antibiotics promote aggregation within aquatic bacterial communities. Front. Microbiol. 5, 1–9. doi:10.3389/fmicb.2014.00297.

Cromwell GL (2001). Antimicrobial and pro microbial agents. p. 401–426. A. Lewis and L. Southern (ed.) Swine nutrition. 2nd ed. CRC Press, Boca Raton, FL. Antimicrobial and pro microbial agents. p. 401–426. In A. Lewis and L. Southern (ed.) Swine nutrition. 2nd ed. CRC Press, Boca Raton, FL. 2001.

Daghrir R, Drogui P (2013). Tetracycline Antibiotics in the Environment: a Review. Environmental Chemistry Letters, 11(3):209–227.

Davies J, Davies D (2010). Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74: 417–33

Defoirdt T, Sorgeloos P, Bossier P (2011). Alternatives to antibiotics for the control of bacterial disease in aquaculture In: Current opinion in microbiology. 14 (3), pp. 251-8.

Diarrassouba F, Diarra MS, Bach S, Delaquis P, Pritchard J, Topp E (2007). Antibiotic resistance and virulence genes in commensal Escherichia coli and Salmonella isolates from commercial broiler chicken farms. J Food Prot. 70:1316–27

Ding C. He J. (2010). Effect of antibiotics in the environment on microbial populations. Applied Microbiology & Biotechnology, 87, 925-941.

Ding H, Wu Y, Zhang W, Zhong J, Lou Q, Yang P, Fang Y (2017). Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China. Chemosphere 184, 137-147.

ECDC/EMEA (2009). Technical Report. The bacterial challenge: time to react.

EFSA (2004). Opinion of the Scientific Panel on Genetically Modified Organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. EFSA Journal. 48: 1–18.

EFSA (2009). Consolidated presentation of the joint Scientific Opinion of the GMO and BIOHAZ Panels on the “Use of Antibiotic Resistance Genes as Marker Genes in Genetically Modified Plants” and the Scientific Opinion of the GMO Panel on “Consequences of the Opinion on the Use of Antibiotic Resistance Genes as Marker Genes in Genetically Modified Plants on Previous EFSA Assessments of Individual GM Plants.” EFSA Journal. 1108: 1–8. (n.d.). General Background: About Antibiotic Resistance. [online] Available at: [Accessed 19 Dec. 2018].

Encyclopedia Britannica. (n.d.). Tetracycline | antibiotic group. [online] Available at: [Accessed 5 Jan. 2019].

FAO, Fisheries and Aquaculture Department Food and Agriculture Organization of The United Nations (2010). The State of World Fisheries and Aquaculture. (2003). Agriculture, Food and Water Table of Contents. [online] Available at: [Accessed 6 Jan. 2019].

Ferrer M, Mendez-Garcia C, Rojo D, Barbas C, Moya A (2017). Antibiotic use and microbiome function. Biochem Pharmacol 134, 114-126.

Fick J, Söderström H, Lindberg RH, Chau DNP, Tysklind M, Larsson DGJ (2009). Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem. 2009;28:2522–7.

Friedman ND, Temkin E, Carmeli Y (2016). The negative impact of antibiotic resistance. Clinical Microbiology and Infection 22: 416–422.

Frost LS, Leplae R, Summers AO, Toussaint A (2005). Mobile genetic elements: the agents of open source evolution. Nat.Rev.Microbiol. 3, 722–732. doi:10.1038/nrmicro1235

Giguere S, Prescott JF, Baggot JD, Walker RD, Dowling PM (2006). Antimicrobial Therapy in Veterinary Medicine (4th ed.). Wiley-Blackwell. ISBN 978-0-8138-0656-3.

Grenni P, Ancona V, Barra Caracciolo A (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal 136, 25-39.

Hamscher G, Sczesny S, Hoper H, Nau H (2002). Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry. 74, (7), 1509-1518.

Heuer H, Schmitt H, Smalla K (2011). Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 2011, 14 (3), 236−243.

Hicks LA, Taylor TH, Hunkler RJ (2010). U.S. Outpatient Antibiotic Prescribing. New England Journal of Medicine 2013, 368, (15), 1461-1462.

Kalmbach S. Manz W. Szewzyk U (1997) Dynamics of biofilm formation in drinking water: phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization. FEMS Microb. Ecol. 22, 265–279.

Karthikeyan KG, Meyer MT (2006). Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ. 361, (1-3), 196-207.

Kayange N, Kamugisha E, Mwizamholya DL, Jeremiah S, Mshana SE (2010). Predictors of Positive Blood Culture and Deaths Among Neonates with Suspected Neonatal Sepsis in a Tertiary Hospital, Mwanza-Tanzania. BMC Pediatrics, 10(1):39.

Kim SC, Carlson K (2006). Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed. Water Research 2006, 40, (13), 2549-2560.

Kinney CA, Furlong ET, Zaugg SD, Burkhardt MR, Werner SL, Cahill JD, Jorgensen GR (2006). Survey of organic wastewater contaminants in biosolids destined for land application. Environmental Science & Technology. 40, (23), 72077215.

Kolb P (2017). Robotics, Security & Safety: The Rise of Antibiotic Resistance. [online] Credit Suisse. Available at: [Accessed 19 Dec. 2018].

Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environmental Science and Technology. 36 pp. 1202-1211

Korzeniewska E, Harnisz M (2012). Culture-Dependent and Culture-Independent Methods in Evaluation of Emission of Enterobacteriaceae from Sewage to the Air and Surface Water. Water, Air, & Soil Pollution, 223(7), pp.4039-4046.

Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005). Antibiotic uptake by plants from soil fertilized with animal manure. Journal of Environmental Quality. 34, (6), 2082-2085.

Kümmerer K, Al-Ahmad A (2000). Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40 (7), 701–710

Larsson DGJ, de Pedro C, Paxeus N (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals . J Hazard Mater.148:751–5.

Li YX, Zhang XL, Li W, Lu XF, Liu B (2013). The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environ Monit Assess 185: 2211–2220.

Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168. doi:10.1016/S14733099(15)00424-7

Marti E, Variatza E, Balcazar JL (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 22, 36–41. doi:10.1016/j.tim.2013.11.001

Martinez JL (2009). The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. Biol. Sci. 276, 2521–30. doi:10.1098/rspb.2009.0320

Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148: 570–579.

Maverakis E, Kim K, Shimoda M, Gershwin M, Patel F, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB (2015). "Glycans in the immune system and The Altered Glycan Theory of Autoimmunity". J Autoimmun. 57 (6): 1–13. doi:10.1016/j.jaut.2014.12.002. PMC 4340844. PMID 25578468.

McManus P, Stockwell V (2000). Antibiotics for Plant Diseases Control: Silver Bullets or Rusty Sabers. APSnet Features. Online. doi: 10.1094/APSnetFeature-2000-0600

Mena C, Rodrigues D, Silva J, Gibbs P, Teixeira P (2008). Occurrence, identification, and characterization of Campylobacter species isolated from Portuguese poultry samples collected from retail establishments. Poult Sci. 87:187–90

Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res. 47, 957–995 10.1016/j.watres.2012.11.027

Motoyama M, Nakagawa S, Tanoue R, Sato Y, Nomiyama K (2011). Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level. Chemosphere 84: 432–438.

Murata A, Takada H, Mutoh K, Hosoda H, Harada A, Nakada N (2011). Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers. Sci Total Environ 409(24), 5305-5312.

OAKLANDER M (2014). [online] Time. Available at: [Accessed 15 Dec. 2018].

Phumart P, Phodha T (2012). Health and Economic Impacts of Antimicrobial Resistant Infections in Thailand: A Preliminary Study. J. Health Syst Res. 6(3).

Pruden A, Arabi M, Storteboom HN (2012). Correlation between upstream human activities and riverine antibiotic resistance genes. Environ. Sci. Technol. 46, 11541–11549. doi:10.1021/es302657r

Pruden A, Pei R, Storteboom H, Carlson KH (2006). Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environ. Sci. Technol. 40, 7445–7450. doi:10.1021/es060413l

Ramessar K, Peremarti A, Gomez-Galera S, Naqvi S, Moralejo M, Munoz P, Capell T, Christou P (2007). Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res. 16: 261–280.

Roca A, Quinto L, Abacassamo F, Morais L, Valles X, Espasa Mateu, Sigauque B (2008). Invasive Haemophilus influenzae Disease in Children Less than 5 Years of Age in Manhiça, a Rural area of Southern Mozambique. Tropical Medicine and International Health, 13(6):8181–26.

Roose-Amsaleg C, Laverman AM (2016). Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ. Sci. Pollut. Res. 23, 4000–4012. doi:10.1007/s11356-015-4943-3

Schwartz T, Hoffmann S, Obst U (1998). Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems. Water Res. 32, 2787–2797

Shi P, Jia S, Zhang XX, Zhang T, Cheng S, Li A (2013). Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res 47(1), 111-120.

Sim WJ, Lee JW, Lee ES, Shinb SK, Hwang SR, Oh JE (2011). Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures . Chemosphere. 82:179–86.

Spoor LE, McAdam PR, Weinert LA, Rambaut A, Hasman H, Aarestrup FM, Kearns AM, Larsen AR, Skov RL, Fitzgerald JR (2013). Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. MBio. 4(4). pii: e00356-13.

Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Gulde BH, Preuss G, Wilme U, Seibert NZ (2002). Removal of pharmaceuticals during drinking water treatment. Environmental Science and Technology. 36 pp 3855-3863

The Economist (2016): Antibiotic resistance: The grim prospect, in: The Economist, May 21st 2016.

Towers L (2014). Antibiotics in Aquaculture Are They Needed?. [online] Available at: [Accessed 26 Dec. 2018].

Toze S (2006). Reuse of effluent water - benefits and risks. Agricultural Water Management, 80, (1-3), 147-159.

United Nations, Department of Economic and Social Affairs, Population Division (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241

US Centers for Disease Control and Prevention (2013). Antibiotic resistance threats in the United States.

Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin S, Robinson TP (2015). Global Trends in Antimicrobial Use in Food Animals. Proceedings of the National Academy of Sciences, 112(18):5649-54.

Verlicchi P, Al Aukidy M, Zambello E (2012). Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review. Science of the Total Environment. 429, 123-155.

Vittecoq M, Godreuil S, Prugnolle F, Durand P, Brazier L, Renaud N, Arnal A, Aberkane S, Jean-Pierre H, Gauthier-Clerc M (2016). Review: antimicrobial resistance in wildlife. Journal of Applied Ecology, 53: 519–529.

Werth B (2018). Cephalosporins - Infectious Diseases - MSD Manual Professional Edition. [online] MSD Manual Professional Edition. Available at: [Accessed 9 Dec. 2018].

Withnall A (2016). The UN just declared the antibiotics crisis is as bad as the AIDS crisis. [online] The Independent. Available at: [Accessed 23 Nov. 2018].

Witte W (2000). Selective pressure by antibiotic use in livestock. Int.J.Antimicrob.Agents 16 Suppl 1, S19– S24. doi:10.1016/S0924-8579(00)00301-0

World Health Organization (WHO) (2014). Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva, Switzerland.

World Health Organization (WHO) (2017). Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis. World Health Organization, Geneva, Switzerland. (WHO/EMP/IAU/2017.12). License: CC BY-NC-SA 3.0 IGO. (n.d.). Effects of Antibiotics on Animal Feed - Presentation. [online] Available at: [Accessed 29 Dec. 2018].

Yao L, Wang Y, Tong L, Deng Y, Li Y, Gan Y, Guo W, Dong C, Duan Y, Zhao K (2017). Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China. Ecotoxicol Environ Saf 135, 236-242.

Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A 110(9), 3435-3440

Zilles J, Shimada T, Jindal A, Robert M, Raskin L (2005). Presence of macrolidelincosamide-streptogramin B and tetracycline antimicrobials in swine waste treatment processes and amended soil. Water Environment Research. 77, (1), 57-62.







Related Articles

Original Research Article
Ibrahim Adamu Yakasai and Muhammed Yusuf Abubakar
Trends in elective caesarean section rate in Aminu Kano Teaching Hospital, Kano: a four (4) year review
Glo. Adv. Res. J. Agric. Sci. April 2014 Vol: 3(4): - [Abstract] [Full Text - PDF] (152 KB)
Ioana Florina Mihai, Alexandra Georgiana Lacatusu, Florina Filip-Ciubotaru, Carmen Dorobat, C. Romanescu, Carmen Manciuc
Major trends in the microbial etiology of urinary tract infection
Glo. Adv. Res. J. Agric. Sci. March 2019 Vol: 2(8): - [Abstract] [Full Text - PDF] (110 KB)
Original Research Articles
Hisham N Altayb, Mohamed A M Siddig, Nagwa M El Amin, Ahmed Ibrahim Hashim, Maowia M. Mukhtar
Molecular Characterization of CTX-M ESBLs among Pathogenic Enterobacteriaceae isolated from different regions in Sudan
Glo. Adv. Res. J. Agric. Sci. April 2018 Vol: 7(2): - [Abstract] [Full Text - PDF] (1,351 KB)
Bassetti, Bil Randerson, Scherre, Flávia de Souza Freitas; Pontello, Mariana Andreata Rocha; Mattede Maria das Graças Silva; Chambo Filho Antônio
Microbiological Profile of Breast Abscess in the Gynecology and Obstetrics Care Service of a Philanthropic Hospital in Vitória, ES, Brazil
Glo. Adv. Res. J. Agric. Sci. April 2018 Vol: 7(2): - [Abstract] [Full Text - PDF] (103 KB)
Ghulam Jilany khan, Fauzia Tajdin, Nadeem Reyaz
Etiology and antimicrobial susceptibility profile of bacteria isolated from patients with meningitis
Glo. Adv. Res. J. Agric. Sci. July 2013 Vol: 2(7): - [Abstract] [Full Text - PDF] (210 KB)
Denny Widaya Lukman, Mirnawati Bachrum Sudarwanto, Trioso Purnawarman, Hadri Latif, Herwin Pisestyani, Eddy Sukmawinata and Ömer Akineden
CTX-M-1 and CTX-M-55 Producing Escherichia coli Isolated from Broiler Feces in Poultry Slaughterhouse, Bogor, West Java Province
Glo. Adv. Res. J. Agric. Sci. December 2016 Vol: 5(12): - [Abstract] [Full Text - PDF] (114 KB)

Current Issue

Viewing Options

View Full Article - PDF
Download Full Article - PDF

Search for Articles

P. O. Danso on Google Scholar
P. O. Danso on Pubmed
Y.S. Yang on Google Scholar
Y.S. Yang on Pubmed
N. Cao on Google Scholar
N. Cao on Pubmed


Viewed 387
Printed 48
Downloaded 203
Powered By iPortal Works