Global Advanced Research Journal of Agricultural Science (GARJAS) ISSN: 2315-5094
May 2020 Vol. 9(5): pp. 100-109
Copyright © 2020 Global Advanced Research Journals


Full Length Research Paper

Biodegradation of Paraeforce Using Yeast Cells Isolated From Arable Farmland in Obio/Akpor Local Government Area of Rivers State.

Onianwah, F. I¹.; Eze, V. C¹.; Ifeanyi¹, V. O.; Stanley, H.O².


1Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria.

2University of Port Harcourt, Port Harcourt, Rivers State, Nigeria.

*Corresponding Author's Email:

Accepted 17 May, 2020



The aim of the research is explore the biodegradation potential of yeast on paraeforce impacted soil and the analysis of the associated enzymes and metabolites. Soil sample was collected from an agrarian soil previously exposed to paraeforce herbicide. Physicochemical analysis was done on the soil sample. Fungal isolation was done using traditional plate culture and molecular techniques. The biodegradation potential of the isolates was determined using titrimetric method. The physicochemical analysis of the treated soil sample recorded a pH of 6.96, temperature (330C), moisture content (71.8%), nitrate (25.6mg/kg), total organic carbon (42mg/kg), biochemical oxygen demand (5.68mg/kg), and conductivity (4.236µscm-1). Yeasts isolated from the soil sample were Pichia kudriavzevii MT366877, Hanseniaspora opuntiae MT366875, Candida. These yeasts were able to degrade the paraeforce. There was a synergy in the degradative activity of the mixed culture. At the end of 90 days, paraeforce degradation was significant in Pichia kudriavzevii MT366877 (27.5mg/kg), Hanseniaspora opuntiae MT366875 (22.4mg/kg) and Pichia cecembensis MT366876 (23.1mg/kg). Natural attenuation recorded a degradation rate of 41.37mg/kg in 90 days. When the sample was optimized using poultry wastes, the degradation rate improved. The mixed culture achieved 100% (50mg/kg) degradation of paraeforce in 56 days. Natural attenuation achieved 100% degradation in 70 days. Pichia kudriavzevii MT366877, Hanseniaspora opuntiae MT366875 and Pichia cecembensis MT366876 recorded 36.7mg/kg, 29.5mg/kg and 26.08mg/kg respectively at the end of 90 days. The growth of fungi was influenced by pH, temperature, nitrate, total organic carbon and the biochemical oxygen demand of the growth medium. The research showed that living cells of the yeasts have great potential for the degradation of paraeforce in an impacted soil and may be used bioremediation of impacted soil.

Keywords:  Biodegradation, Bioremediation, Contamination, Paraeforce, Soil And Yeasts.







Aneja KR (2005). Experiments in Microbiology, Plant pathology and Biotechnology. 4thEdn. New Age International  Pvt, Ltd, India.

APHA (2005) Standard Methods for the Evaluation of Water and Waste Water. 20th Edition,  American Public Health Association Inc., New York, Washington   DC.

Asogwa EU, Dongo LN (2009). Problems Associated with pesticide usage and Application in Nigerian cocoa production: A Review. African Journal of Agricultural Research. 4(8):675-683.

Baldwin BC, Bray MF, Goeghegan MJ (1977). The Microbial Decomposition of Paraquat, Biochem. Journal, 101:15-17,

Baran N, Mouvet C, Negrel P (2007). Hydrodynamic and geochemical constraints on  pesticide concentrations in the groundwater of anagricultural catchment (Brevilles,    France). Environmental Pollution, 148 (3): 729-738.

Barnett HL, Hunter B (1972). Illustrated genera of imperfecti fungi, 3rd edn. Burges     publishing company, USA.

Belal EB, Zidan NA, Mahmoud HA, Eissa FI (2008). Bioremediation of           pesticides– contaminated soils. J. Agric. Res. Kafrelsheikh. Univ. 34: 588 – 608.

Busse MD, Ratcliff AW, Shestak CJ, Powers RF (2001). Glyphosate toxicity and          the effects of long-term vegetation control on soil microbial communities. Soil Biology      Biochemistry, 33, 1777-1789

Castillo JM, Casas J, Romero E (2011). Isolation of an endosulfan degrading             bacterium                from a coffee farm soil: persistence and inhibitory effect on its           biological functions. Sci. Total Environ. 2011: 412-413.

Cheesbrough M (2001). Medical Laboratory Manual for Tropical Countries, Microbiology          Educational Book Scheme.2: 389-90

Felsenstein J (1985). Confidence limits on phylogenies: An approach using the        bootstrap. Evolution 39:783-791.

Gadd GM (2001). Fungi in bioremediation. Cambridge: Cambridge University Press;.

Guillén F, Gómez-Toribio V, Martínez MJ, Martínez AT (2000). Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase.   Arch Biochem Biophys. 383:142–147. doi:10.1006/abbi.2000.2053.

Halimah M, Nashriyah M, Ismail S, YA Tan (2010). Determination of fluroxypyr-MHE   in clay soil during dry and wet season. J. Agrobiotech., 1: 59–68

Holt JG, Krieg NR, Sneath PHA, Williams ST Eds. (1994). Bergey’s manual of                determinative bacteriology, 9th ed. Baltimore: Williams and Wilkins.

Okpokwasili GC, Nwosu AT (1990). Degradation of Aldrin by Bacteria          Isolates. Nigerian Journal of Technological Research. 2, 1-6.

Oxoid manual (2007), sixth edition (reprint). Published by Oxoid limited, Wade          Road,      Basingstoke Hampshire RG24 OPW. pp105, 172, 182, 192-3, 203-4, 217, 256 and 282.

Polese L (2002). Determination of herbicides residue in soil by small scale extraction. Eclet. Quim. 27:28-29. Sao Paulo.

Rhodes CJ (2012). Mycoremediation (bioremediation with fungi)-growing mushrooms to clean  the earth. Chem Speciat Bioavailab. 26:196–198. doi: 10.3184/095422914X14047407349335.

Saitou N, Nei M (1987). The neighbor-joining method: A new method for reconstructing  phylogenetic trees. Molecular Biology and Evolution 4:406-425.

Singh R, Singh P, Sharma R (2014). Microorganism as a tool of bioremediation         technology for cleaning environment: A review. Proc. Int. Acad. Ecol. Environ. Sci., 4(1): 1 6.

Subhani A, EI-ghamry AM, Huang C, Xu J (2000). Effect of Pesticides (Herbicides) on Soil Microbial Biomass – A Rewiew Pakistan Journal of  Biological  Sciences, 3(5), 705-709.

Wilbawa W, Mohamad RB,  Puteh AB, Omar, D, Juraimi AS, Abdullah (2009). Residual phytotoxicity effects of paraquat, glyphosate and glufosinate-ammonium  herbicides in soils from field-treated plots. Int. J. Agric. Biol., 11: 214–216

Yang S, Hai FI, Nghiem LD (2013). Understanding the factors  controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol. 141:97–108. doi: 10.1016/j.biortech.2013.01.173.

Zawierucha I, Malina G, Ciesielski W, Rychter P (2014). Effectiveness of intrinsic biodegradation enhancement in oil hydrocarbons contaminated soil, Archives  of  Environmental Protection, 40 (1), pp. 101–113.

Zhang W, Jiang F, Ou J (2011). Global pesticide consumption and pollution: with China as  a focus. Proc. Int. Acad. Ecol. Environ. Sci., 1(2): 125-144.







Related Articles

Original Research Articles
Debendranath Guha Mazumder, Kunal K Majumdar, Ishani Kar-Purkayastha, Aloke Ghose, Goutam Mistry, Chandan Saha, Ashoke Nandy and Arabinda Das
Ischemic heart disease in chronic arsenic exposure: A case control study in West Bengal
Glo. Adv. Res. J. Agric. Sci. February 2013 Vol: 2(2): - [Abstract] [Full Text - PDF] (168 KB)
Rachid Boutaib, Hakima Azhari, Mohammed Abid and Mohammed Marhraoui
Comparison of Escherichia coli levels in shellfish from Mediterranean coast, Morocco
Glo. Adv. Res. J. Agric. Sci. November 2015 Vol: 4(10): - [Abstract] [Full Text - PDF] (409 KB)
Shehu K, Salau, IA, Kasarawa, AB And Umar, AI
Study on fungi associated with metropolitan waste water used for irrigation on soil in sokoto metropolis.
Glo. Adv. Res. J. Agric. Sci. June 2014 Vol: 3(6): - [Abstract] [Full Text - PDF] (123 KB)
Y Rahimsouri, A Yaghubpur and S Modabberi
Environmental geochemistry of Aq-Darreh Bala abandoned Sb mine and its impacts on water, sediment, and soil pollution in the Aq-Darreh River Watershed, Takab, NW Iran
Glo. Adv. Res. J. Agric. Sci. August 2012 Vol: 1(5): - [Abstract] [Full Text - PDF] (952 KB)
Punam Jeswal, Dhiraj Kumar, Manoj Kumar
Fungal incidence and co-contamination of aflatoxins & citrinin in raisins, pistachio nuts, walnuts and almonds marketed in Indo-Gangetic Plain of Bihar
Glo. Adv. Res. J. Agric. Sci. September 2017 Vol: 6(9): - [Abstract] [Full Text - PDF] (1,085 KB)
Alfred Bennun
Mining waste-Cyanide as a source of added value by its conversion into Urea and Urea-Formaldehyde
Glo. Adv. Res. J. Agric. Sci. February 2013 Vol: 2(1): - [Abstract] [Full Text - PDF] (202 KB)

Current Issue

Viewing Options

View Full Article - PDF
Download Full Article - PDF

Search for Articles

Onianwah on Google Scholar
Onianwah on Pubmed
F. I.; Eze on Google Scholar
F. I.; Eze on Pubmed
V. C; Ifeanyi on Google Scholar
V. C; Ifeanyi on Pubmed
V. O.; Stanley on Google Scholar
V. O.; Stanley on Pubmed
H.O. on Google Scholar
H.O. on Pubmed


Viewed 867
Printed 55
Downloaded 290
Powered By iPortal Works