Global Advanced Research Journal of Microbiology (GARJM) ISSN: 2315-5116
March 2019 Vol. 8(2): pp. 038-050
Copyright © 2019 Global Advanced Research Journals

 

Full Length Research Paper

 

The Diversity of Arbuscular Mycorrhizal Fungi Associated With Plants in Ethiopia and Its Role in Agro-Ecosystem 

Girma Zeleke*, Beyene Dobo

Girma Zeleke, Hawassa University, Department of Biology, P.O.Box: 05, Hawassa, Ethiopia

Email: girmaabc123@gmail.com

Accepted 22 March, 2019

 

Abstract

In this review it has been tried to surface out the role of arbuscular mycorrhizal fungi to the agro ecosystem. Particularly, AMF's contribution to stabilize soil  fertility,  reduction of  use  of   phosphate fertilizer,  increase in plant  tolerance  against  biotic  &  abiotic  stresses,  and  enhancement of  quality  plant production was  reviewed.  Besides,  this  review  has  attempted  to  compile  several  efforts, conducted  so  far  in  the  study  of  AMF  diversity  and  abundance  at  different  land  use  patterns  in Central, Rift Valley, Northern and Southern Ethiopia. AMF diversity, plant-fungus assemblages, is generally influenced by the slope, soil physico-chemical nature. Especially soil PH, availability of extractable chemicals such as calcium & potassium, its cation exchange capacity, electrical conductivity and field capacity are determinant factors. However, the effects of   factors such as  plant  community  in  the  AMF  community  composition  are  less  clear.  In general, infectivity and diversity of AMF communities is often reduced in disturbed habitats such as agro ecosystems or post-mining sites. AMF are considered to have low specificities of association with host species, but this conclusion is mostly based on experiments in which individual isolates of fungal species are grown separately. When fungi are examined as a community, evidence suggests fungal growth rates are  highly  host-specific,  hence  it  can  be  concluded  that  ecological  specificity  applied  to  some arbuscular  mycorrhizal  associations.  However, the competitive balance between AM fungal species in terms of their ability to colonize roots may be affected by environmental conditions. This  specificity  of  fungal  response  could  contribute  to  the  maintenance  of  diversity  within  the  AMF community.  Regarding  the seasonal  diversity  of  AMF,  evidence  has  showed  that  fungal  spore density differs seasonally, with some fungi sporulating in late spring and others sporulating at the end of summer. As the spores represent the dormant state of the fungus, the physiologically active state is most likely the mirror image of the seasonal spore counts. Though scholars in Ethiopia have contributed tremendously, yet there are still lots of tasks which are required to be carried out to help respond the outstanding questions allied with fungi-plant assemblages. .

Keywords:  Arbuscular mycorrhizal fungi, Diversity, Agroecosystem.

 

 

REFERENCES

 

Akkopru A, Demir S (2005). Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153:544–550.

AL-KARAKI GN, AL-RADDAD A (1997). Effects of arbuscular fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in their drought resistance. Mycorrhizae, 7: 83−88.

Altieri MA (1995). Agroecology: the science of sustainable agriculture. Westview Press, Boulder. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31.

Anders M (1993). The mycorrhizal status of vascular epiphytes in Bale Mountains National Park, Ethiopia.4: 11. https://doi.org/10.1007/BF00203244.

Andrea B, Roberto B, Alberto O, Antonio C, Barbera, Erica L,Valeria B (2014). Arbuscular Mycorrhizal Fungi and their Value for Ecosystem Management. Biodiversity-The Dynamic Balance of the Planet. http://dx.doi.org/10.5772/58231.

Asmelash F, Bekele T, and Birhane E. (2016). The Potential Role of Arbuscular Mycorrhizal Fungi in the Restoration of Degraded Lands. Front. Microbiol. 7:1095. doi: 10.3389/fmicb.2016.01095.

Barrios E (2007). Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285.

Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009). Changes in soil aggregation and glomalinrelated soil protein content as affected by the Arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496.

Beecher GR (1998). Nutrient content of tomatoes and tomato products. Proc. Soc. Exp. Biol. Med., 218: 98−100.

Berruti A, Lumini E, Balestrini R, Bianciotto V (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: Let's benefit from past successes. Front Microbiol: 6: 1559. doi:10.3389/fmicb.2015.01559 PMID: 26834714.

Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005). Suppression of Rhizoctonia rootrot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288.

Bever JD, Morton JB, Antonovics J, Schultz PA (1996). Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in Mown grassland. J. Ecol. 84: 71- 82.

Bever JD, Schultz PA, Pringle A, Morton JB (2001). Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923–931.

Beyene D, Fassil A, Zebene A (2016a). Diversity and Abundance of Arbuscular Mycorrhizal Fungi Under Different Plant and Soil Properties in Sidama, Southern Ethiopia. Advances in Bioscience and Bioengineering. Vol. 4, No. 3, 2016, pp. 16-24. doi: 10.11648/j.abb.20160403.11.

Beyene D, Fassil A, Zebene A (2017). Effect of tree-enset-coffee based agroforestry practices on arbuscular mycorrhizal fungi (AMF) species diversity and spore density. Agroforest Syst .https://doi.org/10.1007/s10457-016-0042-9.

Beyene D, Fassil A, Zebene A. (2016b). Diversity of Arbuscular Mycorrhizal Fungi of Different Plant Species Grown in Three Land Use Types in Wensho and Shebidino Districts of Sidama in Southern Ethiopia. Advances in Bioscience and Bioengineering. Vol. 4, No. 4, 2016, pp. 25-34. doi: 10.11648/j.abb.20160404.11.

Biermann B, Lindeman RG (1983). Use of vesicular-arbuscular mycorrhizal roots, intraradicle vesicles and extraradicle vesicles as inoculum. New Phytol. 95:97-105.

Birhane E, Kuyper TW, Sterck FJ, Bongers F. (2010). Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia. For. Ecol. Manage. 260:2160-2169.

Blaszkowski J (1989). The occurrence of the Endogonaceae in Poland. Agric. Ecosyst. Environ. 29:45-50. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications :1: 48.

Caravaca F, Alguacil MM, Azcòn R, Roldán A (2006). Formation of stable aggregates in rhizosphere soil of Juniperus oxycedrus: effect of am fungi and organic amendments. Appl Soil Ecol 33:30–38.

Carrenho R, Trufem SFB, Bononi VLR, Silva ES (2007). The effect of different soil properties on arbuscular mycorrhizal colonization of peanuts, sorghum and maize. Acta. Bot. Bras., 21: 23-730.

Casazza G, Lumini E, Ercole E, Dovana F, Guerrina M, Arnulfo A (2017). The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis. PLoS ONE 12(2): e0171866. doi:10.1371/journal. pone.0171866. 

Cavagnaro TR (2008). The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325. 

Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006). Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225.

Chaudhary V, Kapoor R, Bhatnagar AK (2008). Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181.

Cordier C, Gianinazzi S, Gianinazzi-Pearson V. (1996). Colonization patterns of root tissues by Phythophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232.

Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van den Belt M (1997). The value of the world’s ecosystem services and natural capital. Nature 387:253–260.

Cummings JA, Kovacic JP (2009). The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care 19:215–240. 

Datnoff LE, Nemec S, Pernezny K (1995). Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431.

Diaz G, Honrubia M (1994). A mycorrhizal survey of plants growing on mine wastes in Southern Spain. Arid Soil Res. Rehabil. 8:59-68.

Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003). Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204.

Diop TA, Gueye M, Dreyfus BL, Plenchette C, Strullu DG (1994). Indigenous arbuscular mycorrhizal fungi associated with Acacia albida Del. in different areas of Senegal. Appl. Environ. Microbiol. 60:3433-3436.

Diriba Muleta, Fassil Assefa, Sileshi Nemomissa, Granhall Ulf (2008). Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biology and Fertility of Soils. Volume 44, Issue 4, pp 653–659.

Douds DD, Millner P (1999). Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agricult. Ecosyst. Environ. 74:77 – 93.

Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010). Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J: 4: 337±345. doi: 10.1038/ismej.2009.122 PMID: 19924158.

Emiru B, Nakiguli F, Kidane G, Amanuel Z, Ssemwanga M (2017). Vegetation cover density and disturbance affected arbuscular mycorrhiza fungi spore density and root colonization in a dry Afromontane forest, northern EthiopiaJ. For. Res.  https://doi.org/10.1007/s11676-017-0493-5.

Engindeniz S (2006). Economic analysis of pesticide use on processing tomato growing: a case study for Turkey. Crop Prot 25:534–541. 

Evelin H, Kapoor R, Giri B (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280. FABER, B. A., ZASOSKI, R. J., BURAU, R. G., URIU, K (1990) Zinc uptake by corn as aff ected by vesicular-arbuscular mycorrhizae. Plant Soil, 129: 121−130.

Fisher B, Turner RK (2008). Ecosystem services: classification for valuation. Biol Conserv 141:1167–1169.

Fitter AH, Sanders IR (1992). Interactions with the soil fauna. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 333–354.

Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005). Global consequences of land use. Science 309:570–574. forest and pasture. Biotropica 32: 734–750.

Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2001). Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiology, 127(4): 1493−1499.

Gamalero E, Lingua G, Berta G, Glick BR. (2009). Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514.

Gerdemann JW, Trappe MJ (1974). The Endogonaceae in the Pacific Northwest. Mycologia Memoir, No. 5. The New York Botanical Garden, New York. P 76.

Gianinazzi S, Gianinazzi-Pearson V (1988). Mycorrhizae: a plant’s health insurance. Chim Oggi 10:56–68.

Gianinazzi S, Huchette O, Gianinazzi-Pearson V (2008). New outlooks in mycorrhiza applications. In: Baar J, Estaun V, Ortas I, Orfanoudakis M, Alifragis D (eds) Proceedings of the COST870 meeting “Mycorrhiza application in sustainable agriculture and natural systems”, 17–19 September 2008, Thessaloniki, Greece. pp 20–22.

GILDON A, TINKER, PB (1983). Interactions of vesicular-Arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular Arbuscular mycorrhizas. New Phytol., 95: 247−261.

Giovannetti M, Nicolson HT (1983). Vesicular-arbuscular Mycorrhizas in Italian sand dunes. Trans. Braz. Mycol. Soc. 80:552-555.

Gollottee A, Gianinazzi-Pearson V, Giovannetti M, Sbrana C, Avio L, Gianinazzi S. (1993). Cellular localization and cytochemical probing of resistance reactions to arbuscular mycorrhizal fungi in a locus a myc-mutant of Pisum sativum L. Planta 191:112–122.

Görlach B, Landgrebe-Trinkunaite R, Interwies E, Bouzit M, Darmendrail D, Rinaudo JD (2004). Assessing the ecomic impacts of soil degradation. In: Volume IV: Executive Summary Study commissioned by the European Commission, DG Environment, Study Contract NVB1/ETU/2003/0024, Berlin.

Hao Z, Fayolle L, van Tuinen D, Gianinazzi-Pearson V, Gianinazzi S (2009). Mycorrhiza reduce development of nematode vector og Grapevine fanleaf virus in soils and root systems. In: Boudon- Padfieu E (ed) Extended abstract 16th meeting of ICVG, Dijon, France. pp 100–1001.

Hart MM, Trevors JT (2005). Microbe management: application ofmycorrhizal fungi in sustainable agriculture. Front Ecol Environ 3:533–539.

Herring JR, Fantel RJ (1993). Phosphate rock demand into the next century: impact on world food supply. Nat Resour Search 2:226–246. 

Huang Z, Zou Z, He C, He Z, Zhang Z, Li J (2011). Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water defi cit. Plant and Soil, 339 (1): 391−399.

Ingleby K, Diagne O, Deans JD, Lindley DK, Neyra M, Ducousso M (1997). Distribution of roots, arbuscular mycorrhizal colonisation and spores around fast-growing tree species in Senegal. For. Ecol. Manage. 90:19-27.

Jakobsen I (1995) Transport of phosphorus and carbon in VA mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza. Springer- Verlag, Berlin, pp 297–324. 

Janos DP (1992). Heterogeneity and scale in tropical vesicular-arbuscular mycorrhizal formation. In: Mycorrhizas in ecosystems (Read, D. H., Lewis, D. H. Fitter, A. H. and Alexander, I. J.Eds): CAB International, Wallingford, England, pp 276-282.

Johnson, NC. Copeland, PJ. Croolston, RK. Pfleger, FL. (1992). Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agron J 84:387–390.

Kahiluoto H, Ketoja E, Vestberg M, Saarela I. (2001). Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant and Soil 231:65-79.

Khade SW, Adholeyavan A. (2009). Arbuscular mycorrhizal association in plants growing on metal-contaminated and non contaminated soils. Water Air Soil Pollut 202:45–56.

Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355.

Lakshman HC, Rajanna L, Inchal RF, Mulla FI, Srinivasulu Y (2001). Survey of VA- mycorrhizae in agroforestry and its implications on forest trees. Trop. Ecol. 42(2):283286.

Lal R (2009). Soil degradation as a reason for inadequate human nutrition. Food Security 1:45– 57.

Leake JR, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004). Network of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045.

Lingfei L, Anna Y, Zhiwei Z. (2005). Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol. Ecol. 54:367-373. 

LIU A, HAMEL C, ELMI A, COSTA C, MA B, SMITH DL (2002). Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can. J. Soil Sci., 82(3): 271−278.

López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009). Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385. 

Louis L, Lim G (1987). Spore density and root colonization of vesicular –arbuscular Mycorrhizas in tropical soil. Trans. Braz. Mycol. Soc. 88:207-212.

Martinez-Medina A, Pascual JA, Lloret E, Roldan A (2009). Interactions between arbuscular mycorrhizal fungi and Trichoderma harzianum and their effects on Fusarium wilt in melon plants grown in seedling nurseries. J Sci Food Agric 89:1843–1850.

Marulanda A, Barea JM (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124.

Marulanda A, Barea JM, Azcon R (2006). An indigenous droughttolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678.

McGonigle TP, Fitter AH (1990). Ecological specificity vesicular-arbuscular mycorrhizal associations. Mycol Res 94:120–122.

Mengsteab Hailemariam, Emiru Birhane, Zebene Asfaw and Solomon Zewdie. (2013). Arbuscular mycorrhizal association of indigenous agroforestry tree species and their infective potential with maize in the rift valley, Ethiopia. Agroforestry Systems .Volume 87, Issue 6, pp 1261–1272.

Moges Shenkutie. (2014). Arbuscular Mycorrhizal Fungi abundance And diversity across different land-use types In Jabi Tehnan woreda Western Gojam, Ethiopia.MSc thesis In Microbiology, Haramaya University.

Muleta, D., Assefa, F., Nemomissa, S. and Granhall, U (2007) Composition of coffee shade tree species and density of indigenous arbuscular mycorrhizal fungi (AMF) spores in Bonga natural coffee forest, southwestern Ethiopia. Forest Ecology and Management, 241: 45-154.

Muthukumar T, Sha LQ, Yang XD, CaoM., Tang JW, and Zheng Z. (2003b). Mycorrhiza of plants in different vegetation types in tropical ecosystems of Xishuangbanna, southwest China. Mycorrhiza, 13, 289-297.

Nelson LL, and Allen AB. (1993). Restoration of Stipa pulchra grasslands: Effects of mycorrhizae and competition from Avena barbata. Restoration Ecol 2:40–5.

Nziguheba G, Smolders E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in european countries. Sci Total Environ 390:53–57.

Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A. (2005). Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283. Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature             Reviews Microbiology 2008;6:763–75. 

Picone C. (2000). Diversity and abundance of arbuscular-mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32:734-750.

Pimm LS. (1997). The value of everything. Nature 387:231–232. Plant Signal Behav. 2011; 6: 175±191. doi: 10.4161/psb.6.2.14146 PMID: 21512319.

Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R. (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359.

PuÈschel D, Rydlova J, VosaÂtka M. (2008). Does the sequence of plant dominants affect mycorrhizal development in simulated succession on spoil banks? Plant Soil: 302(12):273-82. https://doi.org/10. 1007/s11104-007-9480-5.

Remy W, Taylor TN, Hass H, Kerp H. (1994). Four hundred million year old vesicular-arbuscular mycorrhizae. Proc Natl Acad Sci. USA .91: 11841±11843. PMID: 11607500.

Rillig MC, Mummey D. (2006). Mycorrhizas and soil structure. New Phytol 171:41–53.

Rillig MC, Wright SF, Nichols KA, Schmid WF, Torn MS. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant Soil 238:325–333.

Robertson GP, Swinton SM. (2005). Reconciling agricultural productivity and environmental integrity is a grand challenge for agriculture. The Ecological Society of America 3:39– 46.

Roose T, Fowler AC. (2004). A mathematical model for water and nutrient uptake by plant root systems. J Theor Biol 228:173–184. 

Schliemann W, Ammer C, Strack D. (2008). Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochem 69:112–146.

SCHREINER RP, MIHARA KL, DANIEL H, BETHLENFALVAY GJ. (1997). Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil, 188: 199−209.

Schüßler A, Walker C. (2011). Evolution of the “Plant-Symbiotic” Fungal Phylum, Glomeromycota. In: Pöggeler S, Wöstemeyer J, editors. Evolution of Fungi and Fungal-Like Organisms, Springer Berlin Heidelberg: p. 163–85.

Schüβler A, Schwarzott D, Walker C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research:105: 1413–21.

Seeram NP. (2008). Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56:627–629.

Silvio Gianinazzi ,Armelle Gollotte , Marie-Noëlle Binet , Diederik van Tuinen , Dirk Redecker  and Daniel Wipf. (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Review: Springer-Verlag  DOI 1 0.1007/s00572-010-0333-3 2010.

Simon L, Bousquet J, Levesque RC, Lalonde M. (1993). Origin and diversification of endomycorrhizalfungi and coincidence with vascular land plants. Nature :363:67–9.

Singh LP, Gill SS, Tuteja N. (2011). Unravelling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav. 6: 175±191. doi: 10.4161/psb.6.2.14146 PMID: 21512319.

Smith FA, Grace EJ, Smith SE. (2009). More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358.

Smith SE, Read DJ. (2008). Mycorrhizal symbiosis, 3rd edn. Academic, London. Smith, S. E. and Read, D. J (1997) Mycorrhizal symbiosis. Academic Press, London.

Smith SE. and Read DJ. (2008). MycorrhizalSymbiosis, 3ndEdn.London: AcademicPress. Snoeck D, Abolo D, Jagoret P (2010) Temporal changes in VAM fungi in the cocoa agroforestry systems of central Cameroon. Agroforestry Syst. 78:323-328.

Tadesse Chanie and Fasil Assefa. (2013). Mycorrhizal fungi associated with shade trees and Coffea arabica L. in a coffee-based agroforestry system in Bonga, Southwestern Ethiopia. Afrika focus 26:111-131.

Talavera M, Itou K, Mizukubo T. (2001). Reduction of nematode damage by root colonization with arbuscular mycorrhizal (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidogynidae) and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems. Appl Entomol Zool 36:387–392.

Talukdar NC, Germida JJ. (1993). Occurrence and isolation of vesicular-arbuscular mycorrhizae in cropped field soils of Saskatchewan. Can. J. Microbiol. 39:576-586.

Tao L, Jianping L, Zhiwei Z. (2004). Arbuscular mycorrhizas in a valley-type savanna in southwest China. Mycorrhiza 14:323-327.

Tekalign Mamo and Killham, KS. (1987). Effect of soil liming and vesicular-arbuscular mycorrhizal inoculation on the growth and macro nutrient content of the teff plant. Plant and soil 102:257-25.

Tesfaye Wubet, Ingrid Kottke, Demel Teketay, and Franz Oberwinkler. (2009). Arbuscular mycorrhizal fungal community structures differ between co-occurring tree species of dry Afromontane tropical forest, and their seedlings exhibit potential to trap isolates suited for reforestation. Mycological Progress, Volume 8, Issue 4, pp 317–328.

Udaiyan K, Karthikeyan A, Muthukumar T. (1996). Influence of edaphic and climatic factors on dynamics of root colonization and spore density of vesicular-arbuscular mycorrhizal fungi in Acacia farnesiana Willd. and A. planifrons W.et.A. Trees 11: 65-71.

Utkhede R. (2006). Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with Arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. radicislycopersici. Biocontrol 51:393–400.

Wang B, Qiu YL. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza;16:299–363.

Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC. (2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461.

Zerihun Belay, Fassil Asefa, Mauritz V. (2014). Diversity and abundance of arbuscular mycorrhizal fungi associated with acacia trees from different land use systems in Ethiopia. Afr. J. Microb. Res. 7(48):550.

Zerihun Belay, Vestberg V, Fassil Assefa (2015). Diversity and abundance of arbuscular mycorrhizal fungi associated with acacia trees from different land use systems in Ethiopia. Tropical and Subtropical Agroecosystems, 18: 47 – 69. Zobel M,OÈ pik M (2014) Plant and arbuscular mycorrhizal fungal (AMF) communities which drives which? J Veg Sci. 25: 1133-1140. 

Zerihun Belay, Vestberg, M. and Fassil Assefa. (2013). Distribution and abundance of arbuscular mycorrhizal fungi associated with acacia trees from different land use systems in Ethiopia. Africa Journal of Microbiology Research 7(48):5503-5515.

 


 

Related Articles


Review
Muhammad Zubair Khan, Ijaz Shafi Gilani and Amanullah Khan Miankhe
Information technology led globalization and transformation of polity from local to global
Glo. Adv. Res. J. Microbiol November 2012 Vol: 1(8): - [Abstract] [Full Text - PDF] (371 KB)
Original Research Articles
VROH Bi Tra Aimé, ADOU YAO Constant Yves, KOUAME Djaha, KPANGUI Kouassi Bruno, GONE BI Zoro Bertin, N’Guessan Kouakou Edouard
Trees species diversity and above ground biomass in three tropical forest types in Azaguié area, Côte d'Ivoire
Glo. Adv. Res. J. Microbiol September 2015 Vol: 1(2): - [Abstract] [Full Text - PDF] (691 KB)
Youssef El Hani, Najat Mahassini, Leila Radi and Abdelkarim Filali-Maltouf
Assessment and chemical risk management in healthcare establishments «case of a laboratory of anatomy and pathological cytology»
Glo. Adv. Res. J. Microbiol December 2016 Vol: 5(12): - [Abstract] [Full Text - PDF] (262 KB)
Ivan Zavala del Angel, Eliseo García-Pérez, Dolores González Hernández, Arturo Pérez-Vázquez, Catarino Ávila Reséndiz
Genetic Diversity of Jatropha curcas L. in Veracruz State, Mexico, and its Relationships with the Content of Phorbol Esters
Glo. Adv. Res. J. Microbiol May 2016 Vol: 5(5): - [Abstract] [Full Text - PDF] (324 KB)
Review
Alejandro De Jesús Cortés-Sánchez, Mayra Diaz-Ramirez, Alan Javier Hernández-Álvarez, Felipe García-Ochoa, Adriana Villanueva-Carvajal, Liliana León-López, Alejandra L. San Martín-Azocar
Bio surfactants produced by enterobacterial
Glo. Adv. Res. J. Microbiol October 2015 Vol: 4(9): - [Abstract] [Full Text - PDF] (244 KB)
Original Research Article
H. Abo Al-Yazeed, Amani M. Marwan, Attia, A. M., A. Samir, Ammar, A. M
Genetic Characterization of Campylobacter jejuni Isolated from Boiler Flocks
Glo. Adv. Res. J. Microbiol June 2019 Vol: 8(4): - [Abstract] [Full Text - PDF] (683 KB)

Current Issue

Viewing Options

View Full Article - PDF
Download Full Article - PDF

Search for Articles

Girma Zeleke on Google Scholar
Girma Zeleke on Pubmed
Beyene Dobo on Google Scholar
Beyene Dobo on Pubmed

Statistics

Viewed 948
Printed 73
Downloaded 511
Powered By iPortal Works