Global Advanced Research Journal of Medicine and Medical Sciences (GARJMMS) ISSN: 2315-5159
January 2018, Vol. 7(1), pp. 001-009
Copyright © 2018 Global Advanced Research Journals


Review Article

Neonatal Diabetes Mellitus: Clinical and Genetic Approach

Najya A. Attia

King Abdullah International Medical Research Center /King Saud bin Abdulaziz University for Health Sciences/ King Abdulaziz Medical City/Pediatric Department/ Endocrine Unit. Jeddah, Saudi Arabia.


Accepted 17 January, 2018


Neonatal diabetes mellitus (NDM) is monogenic diabetes occurs in the first 6 month of age with an incidence of one in 20,000 to 500,000 newborn. This form of diabetes can be either transient (TNDM) resolves within a few months to relapse mainly at pubertal age or permanent (PNDM) stays for life.Abnormalities in the chromosome 6q24 region is present in approximately 70% of TNDM cases, mutations in the KCNJ11 genes, encoding the Kir6.2 subunit of the pancreatic KATP channel is the main case of PNDM, while mutations in the ABCC8 genes encoding the SUR1 subunit of the pancreatic KATP channel can be present in both TNDM and PNDM. Patients with TNDM usually presented earlier and have lower birth weight than PNDM, but there is a considerable overlapping in clinical features between the two groups necessitate molecular genetic tests for accurate diagnosis which has important therapeutic impacts on patients leading to transfer most of PNDM patients with activating mutations in KCNJ11 and ABCC8 genes, from insulin therapy to oral sulfonylurea. This review about NDM focuses on clinical presentation, genetic etiologies,diagnosis, acute treatment and long-term management. We describe a diagnostic algorithms for assessment of suspected neonatal diabetes to increase the yield of positive tests (Figure 2,3).

Keywords: Neonatal diabetes, Permanent neonatal diabetes, Transient neonatal diabetes, KATP channel mutations, Molecular genetic testing, Sulfonylurea.



Abacı A, Razi CH, Ozdemir O, et al (2010). Neonatal diabetes mellitus accompanied by diabetic ketoacidosis and mimicking neonatal sepsis: a case report. J. Clin. Res. Pediatr. Endocrinol. 2(3):131–133.

Abdollahi A (2007). LOT1 (ZAC1/PLAGL1) and its family members: mechanisms and functions. J. Cell Physiol. 210(1):16–25.

Aguilar-Bryan L, Bryan J (2008). Neonatal diabetes mellitus. Endocr. Rev. 29(3):265–291.

Ashcroft FM, Harrison DE, Ashcroft SJ (1984). Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature. 312(5993):446-448.

Ashcroft FM, Rorsman P (1989). Electrophysiology of the pancreatic β-cell. Progress in biophysics and molecular biology. 54(2):87-143.

Augilar-Bryan L, Nichols CG, Wechsler SW, et al (1995). Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 268:423-426.

Babenko AP, Polak M, Cavé H, et al (2006). Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl. J. Med. 355(5): 456–466.

Begum-Hasan J, et al (2008). Familial permanent neonatal diabetes with KCNJ11 mutation and the response to glyburide therapy--a three-year follow-up. J. Pediatr. Endocrinol. Metab. 21:895– 903.

Bennett CL, Christie J, Ramsdell F, et al (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27:20-21.

Bremer AA, et al (2008). Outpatient transition of an infant with permanent neonatal diabetes due to a KCNJ11 activating mutation from subcutaneous insulin to oral glyburide. Pediatr. Diab. 9:236–239.

Cavé H, Polak M, Drunat S, Denamur E, Czernichow P (2000). Refinement of the 6q chromosomal region implicated in transient neonatal diabetes. Diabetes. 49(1):108-113.

Chakera AJ, Flanagan SE, Ellard S, Hattersley AT (2013). Comment on: Khurana et al. The diagnosis of neonatal diabetes in a mother at 25 years of age. Diabetes Care. 2012;35:e59. Diabetes Care. 36(2):e31.

Chan YM, Laffel LM (2007). Transition from insulin to glyburide in a 4-month-old girl with neonatal diabetes mellitus caused by a mutation in KCNJ11. Pediatr. Diab. 8:235–238.

De Franco E, Flanagan SE, Houghton JA, et al (2015). The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: An international cohort study. Lancet. 386:957–963.

Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C (2000). EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat. Genet. 25:406-409.

Della Manna T, et al (2008). Glibenclamide unresponsiveness in a Brazilian child with permanent neonatal diabetes mellitus and DEND syndrome due to a C166Y mutation in KCNJ11 (Kir6.2) gene. Arq Bras Endocrinol. Metabol. 52:1350–1355.

Docherty LE, Kabwama S, Lehmann A, Hawke E, Harrison L, Flanagan SE, et al (2013). Clinical presentation of 6q24 transient neonatal diabetes mellitus(6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia. 56(4):758–762.

Edghill EL, Bingham C, Slingerland AS, et al (2006). Hepatocyte nuclear factor-beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1beta in human pancreatic development. Diabet. Med. 23(12):1301–1306.

Edghill EL, Dix RJ, Flanagan SE, Bingley PJ, Hattersley AT, Ellard S, Gillespie KM (2006). HLA genotyping supports a nonautoimmune etiology in patients diagnosed with diabetes under the age of 6 months. Diabetes. 55(6):1895-1898.

Edghill EL, Flanagan SE, Ellard S (2010). Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11. Rev. Endocr. Metab. Disord. 193–198.

Edghill EL, Flanagan SE, Patch AM, et al (2008).  Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes.  57: 1034– 1042.

Edghill EL, Gloyn AL, Gillespie KM, Lambert AP, Raymond NT, Swift PG, Ellard S, Gale EA, Hattersley AT (2004). Activating mutations in the KCNJ11 gene encoding the ATP-sensitive K+ channel subunit Kir6. 2 are rare in clinically defined type 1 diabetes diagnosed before 2 years. Diabetes. 53(11):2998-3001.

Edghill EL, Gloyn AL, Goriely A, Harries LW, Flanagan SE, Rankin J, Hattersley AT, Ellard S (2007). Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings. The J. Clin. Endocrinol/  Metab. 92(5):1773-1777.

Ellard S, Flanagan SE, Girard CA, Patch AM, Harries LW, Parrish A, Edghill EL, Mackay DJ, Proks P, Shimomura K, Haberland H (2007). Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. The Am. J. Hum. Gen. 81(2):375-382.

Fendler W, Borowiec M, Baranowska-Jazwiecka A, Szadkowska A, Skala-Zamorowska E, Deja G, Jarosz-Chobot P, Techmanska I, Bautembach-Minkowska J, Mysliwiec M, Zmyslowska A (2012). Prevalence of monogenic diabetes amongst Polish children after a nationwide genetic screening campaign. Diabetologia. 55(10):2631-2635.

Fendler W, Pietrzak I, Brereton MF, Lahmann C, Gadzicki M, Bienkiewicz M, Drozdz I, Borowiec M, Malecki MT, Ashcroft FM, Mlynarski WM (2013). Switching to sulphonylureas in children with iDEND syndrome caused by KCNJ11 mutations results in improved cerebellar perfusion. Diabetes care. 36(8):2311-2316.

Flanagan SE, Edghill EL, Gloyn AL, Ellard S, Hattersley AT (2006). Mutations in KCNJ11, which encodes Kir6. 2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype. Diabetologia. 49(6):1190-1197.

Flanagan SE, Patch AM, Mackay DJ, Edghill EL, Gloyn AL, Robinson D, Shield JP, Temple K, Ellard S, Hattersley AT (2007). Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes. 56(7):1930-1937.

Gardner RJ, Mackay DJ, Mungall AJ, et al (2000). An imprinted locus associated with transient neonatal diabetes mellitus. Hum. Mol. Genet. 9(4):589–596.

Gardner RJ, Robinson DO, Lamont L, Shield JP, Temple IK (1998). Paternal uniparentaldisomy of chromosome 6 and transient neonatal diabetes mellitus. Clinical genetics. 54(6):522-525.

Garin I, Edghill EL, Akerman I, et al (2010). Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. PNAS 107: 3105–3110.

Girard CA, et al (2009). Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes. J. Clin. Invest. 119:80–90.

Globa E, Zelinska N, Mackay DJ, Temple K, Houghton JA, Hattersley AT, Flanagan SE, Ellard S (2015). Neonatal diabetes in Ukraine: incidence, genetics, clinical phenotype and treatment. J. Pediatr. Endocrinol. Metab. 28(11-12):1279–1286.

Gloyn AL, Pearson ER, Antcliff JF, et al (2004). Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl. J. Med. 350: 1838–1849.

Greeley SA, Tucker SE, Worrell HI, Skowron KB, Bell GI, Philipson LH (2010). Update in neonatal diabetes. Current Opinion in Endocrinology, Diabetes and Obesity. 17(1):13-19.

Gribble FM, Reimann F (2003). Sulphonylurea action revisited: the post-cloning era. Diabetologia. 46(7):875–891.

Grulich-Henn J, Wagner V, Thon A, Schober E, Marg W, Kapellen TM, Haberland H, Raile K, Ellard S, Flanagan SE, et al (2010). Entities and frequency of neonatal diabetes: data from the diabetes documentation and quality management system (DPV). Diabet. Med. 27(6):709–712.

Gurgel LC, et al (2007). Sulfonylrea treatment in permanent neonatal diabetes due to G53D mutation in the KCNJ11 gene: improvement in glycemic control and neurological function. Diabetes Care. 30:e108]

Habeb AM, Al-Magamsi MS, Eid IM, Ali MI, Hattersley AT, Hussain K, Ellard S (2012). Incidence, genetics, and clinical phenotype of permanent neonatal diabetes mellitus in northwest Saudi Arabia. Pediatr Diabetes. 13(6):499–505.

Hattersley AT, Ashcroft FM (2005). Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes. 54(9):2503–2513.

Henquin JC (2000). Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 49(11):1751-1760.

Hermann R, Laine AP, Johansson C, Niederland T, Tokarska L, Dziatkowiak H, Ilonen J, Soltész G (2000). Transient but not permanent neonatal diabetes mellitus is associated with paternal uniparentalisodisomy of chromosome 6. Pediatrics. 105(1):49-52.

Hermann R, Soltész G (1997). Paternal uniparentalisodisomy of chromosome 6 in transient neonatal diabetes mellitus [2]. European journal of pediatrics. 156(9):740.

Iafusco D, Massa O, Pasquino B, Colombo C, Iughetti L, Bizzarri C, Mammì C, Lo Presti D, Suprani T, Schiaffini R, et al (2012). Minimal incidence of neonatal/infancy onset diabetes in Italy is 1:90,000 live births. Acta Diabetol. 49(5):405–408.

Iafusco D, Salardi S, Chiari G, Toni S, Rabbone I, Pesavento R, Pasquino B, de Benedictis A, Maltoni G, Colombo C, Russo L (2014). Early Onset Diabetes Study Group of the Italian Society of Pediatric Endocrinology and Diabetology (ISPED). No sign of proliferative retinopathy in 15 patients with permanent neonatal diabetes with a median diabetes duration of 24 years. Diabetes Care. 37(8):181-182.

Iafusco D, Stazi MA, Cotichini R, Cotellessa M, Martinucci M, Mazzella M, Cherubini V, Barbetti F, Martinetti M, Cerutti F, Prisco F (2002). Permanent diabetes mellitus in the first year of life. Diabetologia. 45(6):798-804.

Inagaki N, Gonoi T, Clement JP IV, et al (1995). Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 270:1166-1170.

Irgens HU, Molnes J, Johansson BB, Ringdal M, Skrivarhaug T, Undlien DE, Søvik O, Joner G, Molven A, Njølstad PR (2013). Prevalence of monogenic diabetes in the population-based Norwegian Childhood Diabetes Registry. Diabetologia. 56(7):1512-1519.

Ješic´ MM, Ješic´ MD, Maglajlic´ S, Sajic´ S, Necic´ S (2011). Successful sulfonylurea treatment of a neonate with neonatal diabetes mellitus due to a new KCNJ11 mutation. Diabet. Res. Clin. Pract. 91(1):eI-e3.

Kim MS, et al (2007). Sulfonylurea therapy in two Korean patients with insulin-treated neonatal diabetes due to heterozygous mutations of the KCNJ11 gene encoding Kir6.2. J. Korean Med. Sci. 22:616–620.

Kir6.2Klupa T, Skupien J, Mirkiewicz‐Sieradzka B, Gach A, Noczynska A, Szalecki M, Kozek E, Sieradzki J, Mlynarski W, Malecki MT (2009). Diabetic retinopathy in permanent neonatal diabetes due to Kir6. 2 gene mutations: the results of a minimum 2‐year follow‐up after the transfer from insulin to sulphonylurea. Diabet. Med. 26(6):663-664

Koster JC, et al (2008). The G53D mutation in Kir6.2 (KCNJ11) is associated with neonatal diabetes and motor dysfunction in adulthood that is improved with sulfonylurea therapy. J. Clin. Endocrinol. Metab. 93:1054–1061.

Kumaraguru J, Flanagan SE, Greeley SA, Nuboer R, Støy J, Philipson LH, Hattersley AT, Rubio-Cabezas O (2009). Tooth discoloration in patients with neonatal diabetes after transfer onto glibenclamide. Diabetes Care. 32(8):1428-1430.

Landau Z, et al (2007). Sulfonylurea-responsive diabetes in childhood. J. Pediatr. 150:553–555.

Ledermann HM (1995). Is maturity onset diabetes at young age (MODY) more common in Europe than previously assumed? Lancet. 345: 648.

Lee JH, Tsai WY, Chou HC, Tung YC, Hsieh WS (2003). Permanent neonatal diabetes mellitus manifesting as diabetic ketoacidosis. J. Formos Med. Assoc. 102(12):883–886.

Maassen JA, LM’t Hart E, van Essen, Heine RJ, Nijpels G, Jahangir RS, Tafrechi, Raap AK, Janssen GM, Lemkes HH (2004). Diabetes. 53:S103.

Mackay DJ, Temple IK (2010). Transient neonatal diabetes mellitus type 1. Am. J. Med. Genet. C. Semin. Med. Genet. 154C(3):335–342.

Mackay DJ, Temple IK (2010). Transient neonatal diabetes mellitus type 1. Am. J. Med. Genet. C Semin. Med. Genet. 154C(3):335–342.

Malecki MT, et al (2007). Transfer to sulphonylurea therapy in adult subjects with permanent neonatal diabetes due to KCNJ11-activating [corrected] mutations: evidence for improvement in insulin sensitivity. Diabetes Care. 30:147–149.

Masia R, et al (2007). An ATP-binding mutation (G334D) in KCNJ11 is associated with a sulfonylureainsensitive form of developmental delay, epilepsy, and neonatal diabetes. Diabetes. 56:328– 336.

Metz C, Cave H, Bertrand AM, et al (2002). Neonatal diabetes mellitus: chromosomal analysis in transient and permanent cases. J. Pediatr. 141:483-489.

Mohamadi A, et al (2009). Medical and developmental impact of transition from subcutaneous insulin to oral glyburide in a 15-yr-old boy with neonatal diabetes mellitus and intermediate DEND syndrome: extending the age of KCNJ11 mutation testing in neonatal DM. Pediatr Diabetes. 2009 Epub. 10.1111/j.1399-5448.2009.00548.x

Monaghan MC, et al (2009). Case Study: Transitioning From Insulin to Glyburide in Permanent Neonatal Diabetes: Medical and Psychosocial Challenges in an 18-Year-Old Male. Clin. Diab. 27:25–29.

Murphy R, Ellard S, Hattersley A (2008). Clinical implications of a molecular genetic classification of monogenic β-cell diabetes. Nat. Clin. Pract. Endoc. pp.  200–213.

Murphy R, Ellard S, Hattersley AT (2008). Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat. Clin. Pract. Endocrinol. Metab. 4(4):200–213.

Naylor RN, Greeley SA, Bell GI, et al (2011).  Genetics and pathophysiology of nenonatal diabetes mellitus. J. Diabetes Invest. 2: 158– 16

Naylor RN, Greeley SA, Bell GI, Philipson LH (2011). Genetics and pathophysiology of neonatal diabetes mellitus. J. Diabetes Investig. 2:158–169.

Njolstad PR, Sovik O, Cuesta-Munoz A, et al (2001). Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl. J. Med. 344:1588-1592.

Peake JE, McCrossin RB, Byrne G,Shepherd R (1996). X-linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch. Dis. Child Fetal Neonatal Ed. 74:F195-F199.

Pearson ER, Flechtner I, Njølstad PR, Malecki MT, Flanagan SE, Larkin B, Ashcroft FM, Klimes I, Codner E, Iotova V, Slingerland AS (2006). Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6. 2 mutations. New England J. Med. 355(5):467-477.

Proks P, Girard C, Haider S, Gloyn AL, Hattersley AT, Sansom MS, Ashcroft FM (2005). A gating mutation at the internal mouth of the Kir6. 2 pore is associated with DEND syndrome. EMBO reports. 6(5):470-475.

Proks P, Shimomura K, Craig TJ, Girard CA, Ashcroft FM (2007). Mechanism of action of a sulphonylurea receptor SUR1 mutation (F132L) that causes DEND syndrome. Human molecular genetics. 16(16):2011-2019.

Rafiq M, Flanagan SE, Patch AM, Shields BM, Ellard S, Hattersley AT (2008). Neonatal Diabetes International Collaborative Group. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care. 31(2):204–209.

Remedi MS, et al (2009). Secondary consequences of beta cell inexcitability: identification and prevention in a murine model of K(ATP)-induced neonatal diabetes mellitus. Cell Metab. 9:140–151.

Rica I, et al (2007). The majority of cases of neonatal diabetes in Spain can be explained by known genetic abnormalities. Diabet. Med. 24:707–713.

Rubio-Cabezas O, Hattersley AT, Njolstad PR, et al (2014). ISPAD Clinical Practice  Consensus Guidelines 2014. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 15(Suppl 20):47–64.

Sagen JV, Ræder H, Hathout E, Shehadeh N, Gudmundsson K, Bævre H, Abuelo D, Phornphutkul C, Molnes J, Bell GI, Gloyn AL (2004). Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6. 2. Diabetes. 53(10):2713-2718.

Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J (2000). SUR1 knockout mice A model for KATP channel-independent regulation of insulin secretion. J. Biol. Chem. 275(13):9270-7.

Sellick GS, Barker KT, Stolte-DijkstraI,et al (2004). Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat. Genet. 36:1301-1305.

Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC, Charon C, Nicolino M, Boileau P, Cavener DR, Bougneres P, Taha D, Julier C (2006). Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat. Genet. 38(6):682-687.

Shah B, Breidbart E, Pawelczak M, Lam L, Kessler M, Franklin B (2012). Improved long-term glucose control in neonatal diabetes mellitus after early sulfonylurea allergy. J. Pediatr. Endocrinol. Metab. 25(3–4): 353–356.

Shield JP, Gardner RJ, Wadsworth EJ, Whiteford ML, James RS, Robinson DO, Baum JD, Temple IK (1997). Aetiopathology and genetic basis of neonatal diabetes. Archives of Disease in Childhood-Fetal and Neonatal Edition. 76(1):F39-42.

Shimomura K, Hörster F, De Wet H, Flanagan SE, Ellard S, Hattersley AT, Wolf NI, Ashcroft F, Ebinger F (2007). A novel mutation causing DEND syndrome A treatable channelopathy of pancreas and brain. Neurol. 69(13):1342-1349.

Slingerland AS, et al (2006). Improved motor development and good long-term glycaemic control with sulfonylurea treatment in a patient with the syndrome of intermediate developmental delay, earlyonsetgeneralised epilepsy and neonatal diabetes associated with the V59M mutation in the KCNJ11 gene. Diabetologia. 49:2559–2563.

Sperling MA (2005). Neonatal diabetes mellitus: From understudy to center stage. Curr. Opin. Pediatr. 17:512–518.

Stanik J, et al (2007). Prevalence of permanent neonatal diabetes in Slovakia and successful replacement of insulin with sulfonylurea therapy in KCNJ11 and ABCC8 mutation carriers. J. Clin. Endocrinol. Metab. 92:1276–1282.

Stoffers DA, Zinkin NT, StanojevicV,Clarke WL, Habener JF (1997). Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 15:106-110.

Stoy J, et al (2008). Diagnosis and treatment of neonatal diabetes: a United States experience. Pediatr. Diabet. 9:450–459.

Sumnik Z, et al (2007). Sulphonylurea treatment does not improve psychomotor development in children with KCNJ11 mutations causing permanent neonatal diabetes mellitus accompanied by developmental delay and epilepsy (DEND syndrome). Diabet. Med. 24:1176–1178.

Suzuki S, et al (2007). Molecular basis of neonatal diabetes in Japanese patients. J. Clin. Endocrinol. Metab. 92:3979–3985. 

Temple IK, Gardner RJ, Mackay DJ, Barber JC, Robinson DO, Shield JP (2000). Transient neonatal diabetes:widening the understanding of the etiopathogenesis of diabetes. Diabetes. 49(8):1359–1366

Temple IK, Gardner RJ, Mackay DJ, Barber JC, Robinson DO, Shield JP (2000). Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes. 49(8):1359–1366

Temple IK, James RS, Crolla JA, Sitch FL, Jacobs PA, Howell WM, Betts P, Baum JD, Shield JP (1995). An imprinted gene (s) for diabetes?. Nature genetics. 9(2):110-112.

Ting WH, et al (2009). Improved diabetic control during oral sulfonylurea treatment in two children with permanent neonatal diabetes mellitus. J. Pediatr. Endocrinol. Metab. 22:661–667.

Turkkahraman D, Bircan I, Tribble ND, Akçurin S, Ellard S, Gloyn AL (2008). Permanent neonatal diabetes mellitus caused by a novel homozygous (T168A) glucokinase (GCK) mutation: initial response to oral sulphonylurea therapy. The J. pediatrics. 153(1):122-126.

Wambach JA, et al (2009). Successful sulfonylurea treatment of an insulin-naive neonate with diabetes mellitus due to a KCNJ11 mutation. Pediatr Diabetes. 2009 Epub. 10.1111/j. 1399-5448.2009.00557.x

Whiteford ML, Narendra A, White MP, Cooke A, Wilkinson AG, Robertson KJ, Tolmie JL (1997). Paternal uniparentaldisomy for chromosome 6 causes transient neonatal diabetes. J. med. genetics. 34(2):167-168.

Wiedemann B, Schober E, Waldhoer T, Koehle J, Flanagan SE, Mackay DJ, Steichen E, Meraner D, Zimmerhackl LB, Hattersley AT, et al (2010). Incidence of neonatal diabetes in Austria-calculation based on the Austrian Diabetes Register. Pediatr. Diabetes. 11(1):18–23.

Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD (2001). X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nature genetics. 27(1):18.

Wolcott CD, Rallison ML(1972). Infancy-onset diabetes mellitus and multiple epiphyseal dysplasia. J. Pediatr. 80(2):292-297.

Woolley SL, Saranga S (2006). Neonatal diabetes mellitus: A rare but impor­tant diagnosis in the critically ill infant. Eur. J. Emerg. Med. 13(6): 349–351.

Yorifuji T, Kurokawa K, Mamada M, et al (2004). Neonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: Phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1beta gene due to germlinemosaicism. J. Clin. Endocrinol. Metab.  89(6):2905–2908.

Related Articles

Mostafa Q Alshamiri
Diabetic Cardiomyopathy Pathophysiology and Update on Treatment
Glo. Adv. Res. J. Med. Med. Sci. November 2019 Vol: 8(4): - [Abstract] [Full Text - PDF] (185 KB)

Current Issue

Viewing Options

View Full Article - PDF
Download Full Article - PDF

Search for Articles

Najya A Attia on Google Scholar
Najya A Attia on Pubmed


Viewed 2699
Printed 371
Downloaded 992
Powered By iPortal Works