Global Advanced Research Journal of Medicine and Medical Sciences (GARJMMS) ISSN: 2315-5159
November 2018, Vol. 7(9), pp. 190-201
Copyright © 2018 Global Advanced Research Journals


Full Length Research Article

Moringa oleifera Seed Protein Hydrolysates: Kinetics of α-amylase Inhibition and Antioxidant Potentials

Olusola A. O.*, Ekun O. E., David T. I., Olorunfemi O. E. and Oyewale M. B.

Department of Biochemistry, Faculty of Science, Adekunle Ajasin University, Akungba-Akoko, Nigeria.

*Corresponding Author E-mail:, 

Accepted 25 November, 2018


Proteins from n-hexane - treated Moringa oleifera seed flour were isolated using alkaline solubilization followed by acid-induced precipitation. Two proteolytic enzymes, pepsin and trypsin were used to hydrolyze the protein isolates. The resulting hydrolysates were then evaluated for α-amylase inhibitory properties and kinetics as well as antioxidant activities against superoxide radicals and ferric ions. With the use of starch as substrate, the hydrolysates demonstrated a concentration-dependent inhibition of α-amylase with peptic hydrolysates exhibiting 77.591±0.173% and tryptic hydrolysates demonstrating 84.183±1.670% inhibition (IC50 = 0.547 mg/ml to 0.591 mg/ml). Kinetic data showed an uncompetitive subtype of mixed inhibition for peptic hydrolysates and an uncompetitive mode for tryptic hydrolysates, with ki, of 0.166 mg/ml and 0.179mg/ml for peptic and tryptic hydrolysates respectively. Antioxidant assays using superoxide radicals and ferric ions indicated that tryptic hydrolysates had higher scavenging activitiy while peptic hydrolysates possessed higher ferric reducing power. These results suggest that Moringa oleifera seed proteins may contain biologically active peptide sequences which could be harnessed for the formulation of new additives to food and for development of novel anti-diabetic agents.

Keywords: Moringa oleifera, hydrolysates, pepsin, trypsin, α-amylase inhibition, antioxidant potentials.



Acharya DK, Shah IJ, Gami PN,  Shukla RM (2014). Optimization for α-amylase production by Aspergillus oryzae using submerged fermentation technology. Basic Res. J. Microbiol. 1(4): 01-10

Alashi AM, Blanchard CL, Mailer RJ, Agboola SO,  Mawson  AJ,  He  R,  Malomo SA, Girgih  AT,  Aluko  RE  (2014).  Blood pressure  lowering  effects  of  Australian  canola protein  hydrolysates  in  spontaneously hypertensive  rats.  Food  Research  International 55: 281-287.

Ali H, Houghton  PJ,  Soumyanath A  (2006).  Alpha-amylase inhibitory  activity  of  some  Malaysian  plants  used  to  treat diabetes,  with  particular  reference  to Phyllanthus  amarusJ. Ethnopharmacol. 107: 449–455

Anwar F, Latif S, Ashraf M, Gilani AH (2007). Moringa oleifera: A food plant with multiple medicinal uses. Phytother Res. 21(1):17–25.

Arise RO, Yekeen AA, Ekun OE (2016b). In vitro antioxidant and α-amylase inhibitory properties of watermelon seed protein hydrolysates. Environ. Experimental Biol. 14: 163–172

Arise RO, Yekeen AA, Ekun OE, Olatomiwa OJ  (2016a). Angiotensin-I converting enzyme-inhibitory, antiradical and hydrogen peroxide-scavenging properties of Citrullus lanatus seed protein hydrolysates. Ceylon J. Sci. 45: 39–52.

Bernfield P (1951). Enzymes of starch degradation and synthesis. Adv. Enzymol. 12: 379–380.

Cer RZ, Mudunuri U, Stephens R, Lebeda FJ (2009). IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding. Nucleic Acids Research Vol. 37, Web Server issue W441–W445

Chandra K, Salman AS, Mohd A, Sweety R, Ali KN (2015). Protection against FCA Induced Oxidative Stress Induced DNA Damage as a Model of Arthritis and In vitro Anti-arthritic Potential of Costus speciosus Rhizome Extract. Int. J. Pharm. Phytochem. Res. 7(2): 383-389.

Divi SM,  Bellamkonda R, Dasireddy SK (2012). Evaluation  of  antidiabetic and  antihyperlipedemic  potential  of  aqueous  extract  of  Moringa  oleifera in  fructose  fed  insulin  resistant  and  STZ  induced  diabetic  wistar  rats:  a comparative  study,  Asian  J.  Pharm.  Clin.  Res.  5: 67–72.

Garza NG, Koyoc JA, Castillo JA, Zambrano EA, Ancona DB, Guerrero LC, Garcia SR (2017). Biofunctional properties of bioactive peptide fractions from protein isolates of moringa seed (Moringa oleifera). J. Food Sci. Technol. s13197-017-2898-8

Girgih AT, He R, Hasan FM, Udenigwe CC, Gill TA, Aluko RE  (2015).  Evaluation  of  the in  vitro antioxidant  properties of  a  cod  (Gadus  morhua)  protein  hydrolysate  and  peptide fractions. Food Chem.173: 652–659.

Gopalakrishnan L,  Doriya K, Kumar DS (2016). Moringa  oleifera:  A  review  on  nutritive  importance  and  its  medicinal application. Food  Science  and  Human  Wellness  5:49–56

Gornall AG, Bardawill CJ, David MM (1949). Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177: 751–766.

Hoyle NT, Merritt JH (1994). Quality of fish protein  hydrolysate  from  Herring  (Clupea harengus. J. Food Sci. 59: 76-79.

Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V, Sharma A (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE in hibitory activity of peanut protein hydrolysate. Food Chem. 121: 178–184.

Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S (2016). Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health. Int. J. Mol. Sci.17: 2141

Li Y, Li B (2013). Characterization of structure–antioxidant activity relationship of peptides in free radical systems using QSAR models: Key sequence positions and their amino acid properties. J. Theoretical Biol.  318:29–43

Liu S Wang W, Zhang J, Yang X, Lee ET, He Y, Piao J, Yao C, Zeng Z, Howard BV, Fabsitz RR, Best L (2011). Prevalence of diabetes and Impaired Fasting glucose in Chinese adults , China National Nutrition and Health Survey, 2002. Preventing Chronic Disease.  8(1): A13

Lopez-Barrios L, Gutierrez-Uribe JA, Serna-Saldıvar SO (2014). Bioactive Peptides and Hydrolysates from Pulses and Their Potential Use as Functional Ingredients. J. Food Sci. 79(3): 273-283

Madubuike PC, Nwobu DN, Nwajiobi CC, Ezemokwe DE (2015). Proximate Analysis of Moringa Oleifera Seed and Characterization of The Seed Oil. Int. J. Basic and Appl. Sci.  4(1): pp. 71-80.

Malomo S, Onuh J, Girgih A, Aluko R (2015). Structural and antihypertensive properties of enzymatic hemp seed protein hydrolysates. Nutrients 7: 7616–7632.

Mune Mune MA, Nyobe EC, Bassogog CB, Minka SR (2016). A comparison on the nutritional quality of proteins from Moringa oleifera leaves and seeds Cogent Food & Agriculture 2: 1213618

Okereke CJ, Akaninwor JO (2013). The protein quality of raw leaf, seed and root of Moringa oleifera grown in Rivers State, Nigeria. Annals of Biol. Res. 4 (11):34-38

Oyaizu M (1986). Studies on products  of  browning  reactions: antioxidative activities of 581 products of browning reaction prepared from glucosamine. Jap. J. Nutr. 44: 307–315.

Pedroche J, Yust MM, Lqari H, Giron-Calle J, Alaiz M, Vioque J, Millan F (2004). Brassica carinata protein isolates: chemical composition, protein characterization and improvement of functional properties by protein hydrolysis. Food Chem. 88(3):337–346

Piero MN, Nzaro GM, Njagi JM (2014). Diabetes mellitus – a devastating metabolic  disorder.  Asian  J. Biomed.  Pharm.  Sci. 04 (40):1-7.

Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M, Rafieian-Kopaei M (2016). The research and development on the antioxidants in prevention of diabetic complications. Asian Pacific J. Tropical Med.  9(9): 825–831

Razali AN, Amin AM, Sarbon NM (2015). Antioxidant activity and functional properties of fractionated cobia skin gelatin hydrolysate at different molecular weight. Int. Food Res. J.  22(2): 651-660

Salunkhe DK, Chavan JK, Adsule RN, Kadman SS (1992). Peanuts. Ch. 5 in “World  Oil  Seeds:  Chemistry,  Technology  and  Utilization”.  Van  Nostrand Reinhold, NY

Siddhuraju P, Beck K (2003). Antioxidant properties of various solvent extract of total phenolic constituent from three different agrochemical origins of drumstick tree (Moringa Oleifera Lam) J. Agric Food Chem. Vol. 15, pp 2144 – 2155.

Sumitani J, Hattori N, Nakamura Y, Okuda Y, Kawaguchi T, Arai M (2000). The Conserved Tryptophan-Arginine-Tyrosine Motif of a Proteinaceous α-Amylase Inhibitor T-76 from Streptomyces nitrosporeus Is Important for Inhibition of Animal a-Amylases but not for an α-Amylase from Bacillus sp. No. 195. J. Biosci. Bioengin.  90(1):74-80

Sun S,  Ma M,  Lin Q, Yang T,  Niu H (2013). Systematic Investigation of Antioxidant Activity of Egg White Protein Hydrolysates Obtained by Pepsin. Adv. J. Food Sci. Technol. 5(1): 57-62.  

Udenigwe CC,  Aluko RE (2011). Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. Int. J. Molecular Sci. 12: 3148–3161.

Udenigwe CC, Lin Y, Hou W, Aluko RE (2009). Kinetics of the inhibition of renin and angiotensin I-converting  enzyme  by  flaxseed protein  hydrolysate fractions. J. Functional Foods. I: 199- 207.

Vastag Z, Popovic L, Popovic S, Krimer V, Pericin D (2011). Production of enzymatic hydrolysates with antioxidant and angiotensin-I converting enzyme inhibitory activity from pumpkin oil cake protein isolate. Food Chem. 124: 1316–1321

Voet D, Voet J (2004). Biochemistry (3rd ed.). John Wiley & Sons. pp. 167–168.

Wang L, Zhang XT, Zhang HY, Yao HY, Zhang H (2010). Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice. J.  Ethnopharmacol. 130:465–469

Wani AA, Sogi DS, Singh P, Wani IA, Shivhare US (2011).  Characterisation  and Functional  Properties  of  Watermelon  (Citrullus lanatus)  Seed  Proteins.   J. Agric. Food Chem.  91: 113-121.

Wani AA, Sogi DS, Singh P, Wani IA, Shivhare US (2011). Characterisation and functional properties of watermelon (Citrullus lanatus) seed proteins. J. Sci. Food Agric. 91: 113–121.

Xie Z, Huang J, Xu X, Jin Z (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem.111: 370–376.

Yildirim A, Mavi A, Oktay M, Kara AA, Algur OF, Bilaloglu V (2000). Comparison of antioxidant and antimicrobial activities of tilia (Tilia arentea Desf. Ex. D.C.) sage (Salvia triloba L.) and black tea (Camellia sinensis L.) extracts. J. Agr. Food Chem. 48(10): 5030- 5034

Yu Z, Liu B, Zhao W, Yin Y, Liu J, Chen F (2012). Primary and secondary structure of  novel ACE-inhibitory  peptides  from egg white protein. Food Chem. 133: 315–322

Related Articles

Original Research Articles
Teye, G.A., Baffoe, F and Teye, M
Effects of Moringa (Moringa oleifera) leaf powder and dawadawa (Parkia biglobosa), on sensory characteristics and nutritional quality of frankfurter-type sausages – A preliminary study.
Glo. Adv. Res. J. Med. Med. Sci. January 2013 Vol: 2(1): - [Abstract] [Full Text - PDF] (116 KB)
Momoh AO, Adebolu TT and Ogundare AO
The effects of different treatments on the phytochemicals, proximate, and mineral contents of beniseeds (sesamum indicum linn)
Glo. Adv. Res. J. Med. Med. Sci. August 2012 Vol: 1(1): - [Abstract] [Full Text - PDF] (124 KB)
Martin Alain Mune Mune, Samuel Rene Minka, Israel Lape Mbome
Chemical composition and nutritional evaluation of a cowpea protein concentrate
Glo. Adv. Res. J. Med. Med. Sci. July 2013 Vol: 2(3): - [Abstract] [Full Text - PDF] (210 KB)
Sambo S1 Faruk UZ2 and Shahida AA3
Ethanol Production from Fresh and Dry Water Hyacinth Using Ruminant Microorganisms and Ethanol Producers
Glo. Adv. Res. J. Med. Med. Sci. August 2015 Vol: 4(1): - [Abstract] [Full Text - PDF] (461 KB)
Aja PM, Ibiam UA, Uraku AJ, Orji OU, Offor CE and Nwali BU.
Comparative Proximate and Mineral Composition of Moringa oleifera Leaf and Seed.
Glo. Adv. Res. J. Med. Med. Sci. May 2013 Vol: 2(5): - [Abstract] [Full Text - PDF] (127 KB)
Aisha, S.B, Kutama, A.S, Kabir, S and Paul, AT.
Phytochemical Screening and Antifungal Activity Ofmoringa Oleifera on Some Selected Fungi in Dutse, Jigawa State
Glo. Adv. Res. J. Med. Med. Sci. June 2016 Vol: 5(6): - [Abstract] [Full Text - PDF] (133 KB)

Current Issue

Viewing Options

View Full Article - PDF
Download Full Article - PDF

Search for Articles

Olusola AO on Google Scholar
Olusola AO on Pubmed
Ekun OE on Google Scholar
Ekun OE on Pubmed
David TI on Google Scholar
David TI on Pubmed
Olorunfemi OE on Google Scholar
Olorunfemi OE on Pubmed
Oyewale MB on Google Scholar
Oyewale MB on Pubmed


Viewed 2491
Printed 346
Downloaded 1975
Powered By iPortal Works