Global Advanced Research Journal of Agricultural Science (ISSN: 2315-5094) Vol. 13(1) PP. 001-011, May 2025
Available online http:// garj.org/garjas
Copyright © 2025 Global Advanced Research Journals
Full Length Research Paper
Use of leguminous cover crops (Mucuna pruriens and Desmodium intortum) to mobilize phosphorus from an Andosol in the volcanic highlands of North Kivu (Eastern DR Congo)
Innocent Murhula Amani1,2, Janvier Bashagaluke Bigabwa2,4, Nguo Balingene Pascal1, Denis Lekemo Baveng1, Balthasar KapasaLubunga2, Camile Nyembo Kondo3, Primus Azinwi Tamfuh1,5*, Emile Temgoua1
1Department of Soil Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Colline de Foto, Dschang, P.O. Box 222, Cameroon.
2Department of Plant Production, Faculty of Agronomy and Environmental Sciences, Université Catholique la Sapientia de Goma, Kituku, P.O. Box 50 N°2, Goma, DR Congo.
3Department of Animal Production, Faculty of Agricultural and Environmental Sciences, University of Goma, Mugunga, Goma, DR Congo.
4Department of Soil Science, Faculty of Agricultural and Environmental Sciences, Catholic University of Bukavu, Bugabo P.O Box 285, Bukavu, DR Congo.
5Department of Crop Production Technology, College of Technology, University of Bamenda, P. O. Box 39, Bambili, Cameroon.
*Corresponding Author E-mail: iramani.ucs@gmail.com
Received 14 December, 2024; Reversed 15 February 2025; Accepted 15 March 2025
Abstract
Low availability of phosphorus (P) bound by amorphous minerals, losses of soluble P due to soil erosion and phosphorus exports in crops are among the main constraints to agricultural production in the volcanic highlands of North Kivuin the Democratic Republic of Congo. This study was carried out to determine the capacity of cover legumes (Mucuna pruriens and Demodium intortum) to influence soil P mobilization for the improvement of phosphate nutrition in maize cultivated on young andosol. To this end, an experiment was conducted using a randomized and subdivided complete block design (Split-plot) comprising five cropping systems (monoculture maize; maize+Mucuna as a catch crop; maize+Mucuna in PCCS; maize+Desmodium as a catch crop; maize+Desmodium in PCCS). Treatments were repeated 4 times over two cropping seasons (September 2023 and February 2024). The results showed that the soil was a Vitric Lomic Sideralic Andosol, corresponding to a young Andosol on basic pyroclastic material with a low available P content (1.6% of total P), giving a retention rate of 98.5%.The maize+Mucuna PCCS combination produced the most significant improvement in soil-available P and phosphate nutrition in maize. By incorporating 19.7t/ha of dry biomass of Mucuna pruriens into the soil, available P increased from 1.6% to 3.9%, i.e. an increase of 28 mgKg-1 of P compared with the pre-crop concentration. Improved P nutrition also led to an increase in maize grain yields of 4 t/ha and dry biomass yields of 13 t/ha from September 2023 to February 2024. In addition, P exports in harvested maize grain increased from 3.7Kg/ha in the September 2023 season to 19.8Kg/ha in the February season, with no significant reduction in soil P mobilization. Thus, the Maize+Mucuna association in PCCS is recommendable for optimizing phosphate nutrition in the andosols of the volcanic highlands of North Kivu.
Keywords: Andosols, Available phosphorus, zea mays, Mucuna pruriens, Desmodium intortum, Plant Cover Cropping System, North Kivu volcanic highlands.
References
Amani I, Temgoua E, Azinwi P, Kondo C (2022). Utilisation de la légumineuse de couverture Desmodiumintortum pour le contrôle de l'érosion hydrique dans les Hautes Terres de l'Ouest Cameroun. Étude et Gestion des Sols, 29, 351-363
Anda M. & Dahlgren R., 2020. Mineralogical and surface charge characteristics of Andosols experiencing long-term, land-use change in West Java, Indonesia. Soil Science and Plant Nutrition, DOI :10.1080/00380768.2020.1820758
Baributsa D, Díaz-Valderrama JR, Mughanda D, Lubanzadio A, Nshombo JPC, Sperling L, BaouaI B (2021). Grain Handling and Storage in Lubero and Rutshuru Territories in the North Kivu Province, the Democratic Republic of Congo. Sustainability 2021, 13, 9580. https://doi.org/10.3390/su13179580
Barthès B, Azontonde A, Feller Ch (2017). Effets duMucuna sur la production et la durabilité de système de cultures à base de maïs au Sud-Bénin. In Éric Roose (dir.) Restauration de la productivité des sols tropicaux et méditerranéens IRD Éditions. 403-413.
Bashagaluke JI, Logah V, Opoku A, Sarkodie-Addo J, Quansah C (2018). Soil nutrient loss through erosion: Impact of different cropping systems and soil amendments in Ghana. PLoS ONE 13(12): e0208250. https://doi.org/10.1371/journal.pone.0208250
Brookes PC, Cayuela ML, Contin M, de Nobili M, KemmittSJ, Mondini C (2008). The mineralization of fresh and humified soil organic matter by the soil microbial biomass. Waste Manag., 28, 716–722.
Coulibaly K, Vall E, Autfray P, Sedogo MP (2012). Performance technico-économique des associations maïs/niébé et maïs/mucuna en situation réelle de culture au Burkina Faso: potentiels et contraintes. Tropicultura, 30, 3, 147-154
Comité Français d’Étude et de Développement de la Fertilisation Raisonnée COMIFER (2019). La fertilisation P-K-Mg : Les bases de raisonnement. Réalisation CIPS Courriel : studio@cips.frDépôt légal : 4e trimestre 2019. 40p. ISBN 978-2-910393-10-6
Dabney SM, Delgado JA, Reeves DW (2001). Using winter cover crops to improve soil and water quality. Commun. SoilSci. Plan., 32, 1221–1250.
Delaunois A (2006). Guide simplifié pour la description des sols. Chambre d’Agriculture Tarn, 37p.
FAO (2012). Comment lutter contre striga et les foreurs de tige du maïs, Kenya. Technologies and practices for small agricultural producers. CTA. 6p
Hallama M, Pekrun C, Lambers H, Kandeler E (2019). The Roles of Cover Crops and soil microorganisms in phosphorus cycling through agroecosystems.” Plant and Soil 434: 7–45. https://doi.org/10.1007/s11104-018-3810-7.
Hallama M, Pekrun C, Pilz S (2021). Interactions between Cover Crops and Soil Microorganisms Increase Phosphorus Availability in Conservation Agriculture.” Plant and Soil 463: 307–328. https://doi.org/ 10.1007/s11104-021-04897-x.
Hansen V, Müller‐Stöver D, Gómez‐Muñoz B, Oberson A, Magid J (2022). “Differences in Cover Crop Contributions to Phosphorus Uptake by Ryegrass in Two Soils with Low and Moderate P Status.” Geoderma 426: 116075. https://doi.org/10.1016/j.geoderma.2022.116075.
IUSS Working Group WRB (2015). Base de référence mondiale pour les ressources en sols 2014, Mise à jour 2015. Système international de classification des sols pour nommer les sols et élaborer des légendes de cartes pédologiques. Rapport sur les ressources en sols du monde N° 106. FAO, Rome.
Kanyankogote P, Van Ranst E, Verdoodt A, Baert G(2005). Effet de lave trachybasaltique broyé sur les propriétés chimiques de sols de climat tropical humide. Etude et Gestion du Sol, Vol 12 (4) : 301-311.
Kocira A, Staniak M, Tomaszewska M, Kornas R, Jacek Cymerman J, Panasiewicz K, Lipinska H (2020). Legume cover crops as one of the elements of strategic weed management and soil quality improvement. A Review. Agriculture, 10, 394 ; doi:10.3390/agriculture10090394
Koenig D (2005). Agroforesterie au Rwanda : efficacité et limites. In « Erosion et GCES ». Journées Scientifiques AUF, Antananarivo. 37-40.
Kouelo F, Houngnandan P, Azontonde A, Benmansour M, Bekou J, Akplo T(2017). Effet des pratiques de conservation du sol dans le bassin versant de Lokogba au Bénin. Agronomie Africaine 29 (1), 65–78.
Latati M, Bargaz A,Belarbi B, Lazali M, Benlahrech S, Tellah S, Kaci GK, Drevon JJ, Ounane S (2016). The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. European Journal of Agronomy, Volume 72,80-90,https://doi.org/10.1016/j.eja.2015.09.01
Legrand Ph, Bartoli F, Curt T (2007). Spécificités des sols volcaniques du Massif central : bénéfices et contraintes pour la gestion forestière. Revue forestière française, AgroParisTech ,59 (2), 99-118.
Lunze D (2013). Gestion durable des sols en République Démocratique du Congo : état actuel, priorités et besoins. Institut National pour l’Etude et la Recherche Agronomiques, INERA, Kinshasa RDC.20p Consulté à http://www.fao.org/globalsoilpartnership le 22/03/2025
Mboko A, Tendonkeng F, Matumuini F, Zougou G, Miegoue E, Boukila B, Pamo E(2013). Effet comparé de l’enfouissement de deux légumineuses fertilisées au molybdène sur la croissance et le rendement de Brachiariaruziziensis à différentes périodes de fauche dans l’Ouest Cameroun.Int. J. Biol. Chem. Sci. 7(6), 2513-2525.
McDowell R, Dodd R, Pletnyakov P, Noble A (2020). “The Ability to Reduce Soil Legacy Phosphorus at a Country Scale.” Frontiers in Environmental Science 8. https://doi.org/10.3389/fenvs.2020.00006.
Mizota C, Chapelle J (1988). Characterization of some Andepts and Andic soils in Rwanda, Central Africa. Geoderma, 41, 193-209.
Mohseni M, Sardarov M, Haddadi M (2014). Evaluation of the effects of different tillage systems, plant patterns and plant densities on grain yield and yield components of corn (Zea mays L. cv. sc704) in North of Iran. African Journal of Agricultural Research 9(7): 658–662.
Mucheru-Muna M, Pypers P, Mugendi D, Kung’u J, Mugwe J, Merckx R, Vanlauwe B(2010). A staggered maize–legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crops Research 115(2): 132–139
Nguyen PV, McDowell RW, Condron LM (2024). “Impact of Green Manure Crop Species on Rhizosphere Soil Phosphorus.” Soil Research 62: 22257. https://doi.org/10.1071/SR22257.
Nguyen PV, Condron LM, Simpson ZP, McDowell RW (2024). Inclusion of Leguminous Green Manures Enhances Crop Biomass, Nutrient Uptake, Soil Phosphorus Dynamics and Bioavailability.Journal of Sustainable Agriculture and Environment, 2024; https://doi.org/10.1002/sae2.70035
Orwa C, Mutua A,Kindt R, Jamnadass R, Anthony S(2009). Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya
Projet d’Appui au Secteur Agricole dans la Province du Nord-Kivu (PASA-NK), (2015). Rapport de conception finale. Division Afrique de l'Ouest et du Centre Département de la gestion des programmes. 186p
Quantin P (1995). Volcanicsoils of France. Catena, 56. 95-109.
Richardson AE, Barea JM, McNeill AM, Prigent‐ Combaret C (2009). “Acquisition of Phosphorus and Nitrogen in the Rhizosphere and Plant Growth Promotion by Microorganisms.” Plant and Soil 321: 305–339.
Ngongo M, Van ranst E, Baert G, Kasongo L, Verdoodt A, Mujinya B, Mukalay J (2009). Guide des Sols en R.D. Congo. Tome I : Etude et Gestion. ISBN 978-9-0767-6997-4 Édité par UGent, HoGent, UNILU. 262p.
Sanginga N, Woomer P (2009). Integrated soil fertility management in Africa: Principles, Practices and Development Process. Tropical Soil Biology and Fertility Institute of the Centre for Tropical Agriculture (CIAT). Nairobi, 267 pp.
Smith D, Bonhomme S, Sinclair F (2015). Guide technique d’agroforesterie pour la selection et la gestion des arbres au nord-kivu - république démocratique du congo (RDC) ; The World Agroforestry Centre PO Box 30677-00100 Nairobi, Kenya http://worldagroforestrycentre.org
Van Ranst E, Utami S, Verdoodt A, Qafoku N (2008). “Mineralogy of a Perudic Andosol in Central Java, Indonesia. Geoderma 144: 379–386. doi: 10.1016/j.geoderma.12.007