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The disc brake squeal generated during the duty of the brake is considered as a highly main source of 
discomfort for passengers.  It is also considered to be a high frequency noise when it is bigger than 1 kHz 
audible vibration of braking components which is a significant problem that has not been solved 
satisfactorily until recently. Squeal noise is strongly correlated to the squeal index and degree of instability 
of the brake system assembly. Decreasing or controlling this squeal noise to some extent during braking is 
very important matter for the comfort of passengers.  So, a mathematical prediction model of 10-degree-of-
freedom has been developed to study the effect of different brake components parameters on the degree of 
instability and squeal index of the brake system.  The model has considered such factors as the distance 
between clamping bolts of the caliper and width of the friction material, which were not fully covered 
previously besides some other factors.  In this paper, the system is considered to be completely state 
controllable and hence it will be “observable”, then poles of the closed-loop system will be placed at a 
desired location by means of state feedback through the state feedback gain matrix.    This term of 
observability is found to be important because, in practice, the difficulty encountered with state feedback 
control is that some of the state variables are not accessible for direct measurement, with the result that it 
becomes necessary to estimate the immeasurable state variable in order to construct the control signals.  
Complex eigenvalue analysis and state-space representation of the model have been solved using a 
MATLAB program.  It is evident from the analysis that Young’s moduli of the rotor and friction material have 
a great effect on the occurrence of squeal.  The harder the friction material the bias of the brake to squeal.   
It is shown also that the squeal noise of the brake decreases with increasing semi-distance between the 
clamping bolts of the caliper to be at optimum value between 50-70 mm.  The results have show that the 
predicted squeal tendency at varying all the studies parameters with feedback control signal is as less as 
possible to be 43 % compared to other single parameters without feedback signal.    
 
Keywords: Ventilated disc brake, brake, squeal, SI, degree of instability, eigen frequency, controllable and 
observable. 

 
 
INTRODUCTION 
 
The theory of the brake squeal noise has attracted the  
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attention many years ago because of the complex 
dynamic problem during the duty of the brake.  Since 
vehicle comfort has become an important factor to 
indicate the quality of a passenger car, so, eliminating or 
reducing the noise and vibration of a vehicle structure 
and system seems to provide a  leading  edge  in  the  



  

 
 
 
 
market to vehicle manufacturers (Saw Chun et al., 2009 
and Ahmed, 2012).  Many manufacturers of brake pad 
materials spend up to 50% of their engineering budgets 
on noise, vibration and harshness (NVH) issues (Kinkaid 
et al., 2003).  Generally in disc brakes, squeal can occur 
when the brake pads contact the rotor while the vehicle is 
moving at low speeds, setting up a vibration that 
manifests itself as an annoying high-pitched squeal.  
market to vehicle manufacturers (Saw Chun et al., 2009 
and Ahmed, 2012).  Many manufacturers of brake pad 
materials spend up to 50% of their engineering budgets 
on noise, vibration and harshness (NVH) issues (Kinkaid 
et al., 2003).  Generally in disc brakes, squeal can occur 
when the brake pads contact the rotor while the vehicle is 
moving at low speeds, setting up a vibration that 
manifests itself as an annoying high-pitched squeal.     

Many researchers in their studies on the dynamics of 
brake system tried to reduce squeal by changing the 
factors associated with the brake squeal or modifying the 
brake rotor experimentally and theoretically.  (Gouyan et 
al., 1990) studied the low frequency groan of the brake 
that occurs due to the increase in the disc temperature.  It 
was observed that the groan noise is an oscillatory 
phenomenon, which occurs from the effect of vibrations 
on the friction force between a disc and a pad during 
coupling of two rotational vibrations of a disc caliper.  
(Nishiwaki et al., 1989) studied the squeal experimentally 
and theoretically by modifying the disc (rotor) to eliminate 
brake squeal that occurred by self-excited vibration.  The 
vibration modes during brake squeal generation at 6.32 
kHz and 8.25 kHz were visualized by Holographic 
Interferometry.  However, the conventional disc (rotor) 
vibrates at the maximum amplitude in the area excited 
artificially.  (Liles, 1989) found that shorter pads, 
damping, softer disc and stiffer back plate could reduce 
squeal whilst in contrast, higher friction coefficient and 
wear of the friction material were prone to squeal.   (Lee 
et al., 1998) reported that reducing back plate thickness 
led to less uniform of contact pressure distributions and 
consequently increasing the squeal propensity.  (Hu et 
al., 1999) found the optimal design of experiments 
analysis was the one that used the original finger length, 
the vertical slot, the chamfer pad, the 28mm thickness of 
disc, and the 10mm thickness of friction material.   
(Shin et al., 2002) have shown that the damping of the 
pad and the disc were important in reducing instability.  
Their analysis also has shown and confirmed that 
increasing damping of either the disc or the pad alone 
could potentially destabilize the system.  (Liu et al., 2007) 
found that the squeal can be reduced by decreasing the 
friction coefficient, increasing the stiffness of the disc, 
using damping material on the back of the pads and 
modifying the shape of the brake pads.  (Dai et al., 2008) 
have shown that the design of the pads with a radial 
chamfer possesses the least number of unstable modes, 
which implies lesser tendency towards squeal.  (Ahmed 
et al., 2008 and 2009) have shown the effect of disc and 
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pad surface modification by adding a slot in the middle of 
the pad had a great effect on the reducing of the brake 
squeal through the escape of the wear particle via this 
slot.  
The squeal of the disc brake has been studied 
experimentally by installing accelerometers on the back-
plate of the pad.  It was observed that the higher the 
coefficient of friction, the more the rotor squeals (Yasuaki 
et al., 1993).  A brake dynamometer was used also to 
study the brake squeal by knowing the intensity and 
duration of the squeal and also the frequency range of 
the squeal.  In this study, the pressure, temperature, and 
speed ranges were fully controlled during the occurrence 
of the squeal (Bracken et al., 1982).  (Earles et al., 1988) 
dealt with the squeal as not a serious problem 
considering that the squealing brake provides more 
effective braking than a non-squealing brake.  It was 
concluded that increasing disc damping and allowing a 
decrease in rotor stiffness would appear to produce the 
most benefit of decreasing the squeal noise generation.  
(Millner, 1978) dealt with the squeal theoretically by 

studying the first eight disc mode instabilities at µ 
(coefficient of friction) less than 0.5 by building a multi 
degree of freedom mathematical model.  The lower value 
of linear stiffness of the caliper of 318 MNm

-1
 to give 

instability was obtained at the third mode.  In a separate 
piece of work a new system was developed to stop the 
squeals by (Nishizawa et al., 1997) by evaluating the 
electronic control cancelling for the noise (ECCN) with 
the test vehicle.  The ECCN was installed in both front 
calipers to stop the frequency squeals (2-4 KHz) by 
decreasing the rotor vibration electronically on both the 
noise dynamometer and the test vehicle.  (Thomas et al., 
1998) studied the effect of the support stiffness and 
damping conditions on the measured modal parameters 
as frequencies and damping ratios.  It was realized that 
the increase of the measured frequency of the supported 
system was related to the square of the frequency ratio of 
the rigid body mode and the elastic mode.    
It is clear then from those issues that; there were no 
recommendations for reducing the squeal of the disc 
brake from the point of view of the control system 
dynamic.  In the following model of the disc brake there is 
incorporation with the relevant parts of these theories 
according to the theory of system dynamic.  This paper is 
focusing on decreasing the squeal of the ventilated fixed 
caliper disc brake which has not been mathematically 
covered previously using a ten-degree-of-freedom model.  
The system is considered to be completely state 
controllable and hence it will be “observable”, then poles 
of the closed-loop system will be placed at a desired 
location by means of state feedback through the state 
feedback gain matrix.    This term of observability is found 
to be important because, in practice, the difficulty 
encountered with state feedback control is that some of 
the state variables are not accessible for direct 
measurement, with the result that it becomes necessary  
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to estimate the immeasurable state variable in order to 
construct the control signals.  The designed model has 
taken such factors as the distance between clamping 
bolts of the caliper, weight of the caliper and thicknesses 
of the rotor rings that were not fully covered in most 
literatures.  In addition to some other factors such as 
width and Young’s Modulus of the friction material and 
rotor that can affect the brake stability and consequently 
brake squeal noise.  
 
Mathematical Model of the Ventilated Disc Brake 
Squeal Noise 
 
It is well-known that in the fixed caliper disc brake type, 
the caliper piston presses the right (inner) and left (outer)  
 
 
 

 
 
 
 
pads towards the ventilated rotor at the same time as 
shown in Figure 1.  So, a lag could be occurring between 
the two pads at pressing on the rotor and it is assumed 
that the forces occur at the same time and there is a fully 
contact between the pads and the rotor.  A theoretical 10-
degree-of-freedom mathematical model has been 
developed in this study depending on the theoretical 
model of (North, 1972 and Millner, 1978) who are the 
pioneers of dealing with the brake squeal mathematically 
and also the model of (Ahmed, 2012).  This mathematical 
model stresses mainly on changing some brake 
parameters properties in order to find a formula valid for 
minimizing the brake squeal as less as possible as clear 
later.   

The stability of the system of equations, according to 
the geometric stability hypothesis, reflects the likelihood  

 
 

 

 
 

 
Figure 1. Ventilated disc brake rotor (Crolla, 2009). 

 

 
 

Figure 2. Theoretical ten-degree-of-freedom mathematical model for ventilated disc  
brake, (North, 1972, Millner, 1978, Wagner et al., 2004 and Neubauer et al., 2008)  

 
 

of squeal for the brake system modeled (Mario Triches et 
al., 2008).   Several techniques for evaluating the stability 
of a system are available. 
Approaches considered were (a) A transient solution of 
the dynamic equations of motion, (b) Evaluation of the 
Routh criterion, and (c) An eigenvalue analysis of the 
system.  A divergent transient solution indicates that 

instabilities are present in the system.  Likewise, the 
Routh criterion demonstrates whether or not a system is 
stable.  Such solutions, however, provide no insight into 
how the structure could be altered to remove the 
instability.  On the other hand, the complex roots 
obtained from an eigenvalue analysis can reveal which 
system vibration modes are unstable.  Knowledge of the  
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unstable system modes facilitates several control 
methods: modal frequencies could be moved by 
changing components or adding damping, so that the 
mode in question becomes stable.  Based on the 
usefulness of the information, complex eigenvalues using 
MATLAB program are used as a measure of the system 
stability.  It is known that the equation of motion of a 
linear system is: 

 

[ ]{ } [ ]{ } [ ]{ } { }FuKuCuM =++ &&&                                  
    (1) 

 
Where M, C and K are mass, damping and stiffness 

matrices, respectively, and u is the generalized 
displacement vector.  For friction induced vibration, it is 
assumed that the forcing function F is mainly contributed 
by the variable friction force at the pad–rotor interface.   
The friction interface is modeled as an array of friction 
springs and dampers as shown in Figure 2. With this 
simplified interface model, the force vector becomes 
linear.  Based on Newton’s second law, the equations of 
motion of the mathematical model of ventilated disc brake 
shown in figure 2 for a constant pressure P can be written 
after considering some assumptions including:  
o The system is state controllable. 
o The ventilated rotor has two degrees of freedom, 

one in the x-axis direction and the other around the 
y-axis direction. 

o Each pad has two degrees of freedom, one in the 
x-axis direction and the other around the y-axis 
direction. 

o Each piston has two degrees of freedom, one in the 
x-axis direction and the other around the y-axis 
direction.  

o The contact forces F1, F2, F3 and F4 are parallel to 
the face of the rotor, pads and pistons as shown in 
figure 2 and will be activated during the contact 
between the pads and the rotor.  

o The rotor and the pads vibrate in the same mode. 
 
The equations of motion of the ventilated disc due to 

translational and rotational displacements 
d

x  and
d

θ   are 

summarized as follow: 
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The equations of motion of the right pad due to 

translational and rotational displacements 
1x  and

1θ   are  
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summarized as follow: 
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The equations of motion of the left pad due to 

translational and rotational displacements 
2x  and

2θ   are 

summarized as follow: 
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The equations of motion of the right piston caliper due to 

translational and rotational displacements 3x  and 3θ   are 

summarized as follow: 
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The equations of motion of the left piston caliper due to 

translational and rotational displacements 
4x  and

4θ   are 

summarized as follow: 
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Where 

 

F1 = µ. R1  = ( ) ( )[ ].... 1111 xxKxxCF
ddst

−+−+ &&µ      (12) 

F2 = µ. R2  = ( ) ( )[ ].... 2222 xxKxxCF
ddst

−+−+ &&µ        (13) 

F3 = µ. R3  = ( ) ( )[ ].... 133133 xxKxxCF
stb

−+−+ &&µ        (14) 

F4 = µ. R4  = ( ) ( )[ ].... 244244 xxKxxCF
stb

−+−+ &&µ      (15) 

 
The equations from (2) to (11) can be rewritten in the  
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form of:  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] 0 .mk . =++ xxmcx &&&            (16) 

[ ] [ ][ ] [ ][ ] 0 . ...2 2 =++ xxx
nn
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                                 (17) 

 

Where   

n
ω   is the natural frequency of the system. 

 ζ is the damping ratio or viscous damping factor  

             and equal to ζ=c/2.m.
n

ω  

The solutions will be assumed to be in the form as follows:  
 

Xd   =Ad. 
t

e
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e
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due to disc displacement and rotation. 
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e
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due to right pad displacement and rotation. 
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 due to left pad displacement and rotation. 
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 due to right caliper piston displace. and rotation 
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 due to left caliper piston displace.and rotation. 

 

 

And by substitution in the main equation, the 
characteristic equation can be expressed in the following 
form: 
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And the roots of this equation will appear as a complex 
conjugate pairs as follows:  
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The displacement can be also rewritten as a damped 
sinusoidal wave in the form of:  
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Thus, 
i

σ and 
i

ω are the damping coefficient and damped 

natural frequency describing damped sinusoidal motion.   
 
 
By examining the real part of the system eigenvalues the 
modes that are unstable and likely to produce squeal are 
revealed.  Generally, disc brake squeal is caused by 
unstable vibrations of the brake system.  A  Matlab 
program is used to determine if the brake system will 
squeal or not by checking the stability of the ventilated 
disc brake assembly.  This program is able to carry out 
the eigenvalue analysis that can indicate the instability 
level and the natural frequency.  The corresponding 
eigenvalue problem will be in the form of

[ ] [ ] 0)( =− IA λd
e

t

.  Each eigenvalue λ is a complex 

number that contains two parts as mentioned earlier.  
The first part is real and the second part is imaginary.  
When the real part is negative, this indicates that the 
mode is damped and stable and when the real part is 
positive, it means that the mode is not stable and the 
damping is negative.  Rearranging these equations (2-11) 
to be as in the form of equation (1); the mass matrix [M] 
will be in the form of:  
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And the damping matrix [C] will be in the form of: 
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And the stiffness matrix [K] will be in the form of: 
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From the eigenvalues analysis, the instability levels and 
the eigenfrequencies are calculated.  The instability level 
(degree of instability) is defined as the real part of the 

eigenvalue α =Re [λ] and the eigenfrequency is defined 

as the imaginary part of the eigenvalue ω =Im[λ]  Hz.  
Some authors took the instability level as a squeal 
propensity and others don’t.  In this work the squeal 

propensity (σ) that is the squeal index will   be   taken  as  
 

( ) ( )2/sin.
2/122 δωασ +=  as Millner’s, (1978) 

assumption and the results agree with it.  The eigen 

frequencies will be taken as ω/2π  Hz.  Where δ is the 
phase angle. 









= −

part Real

partImaginary 
tan 1δ           (22)  

 
SYSTEM CONTROL DESIGN  
 

The dynamic behaviour of the closed-loop system is 
predicted by means of the open-loop frequency 

response.  Generally, the dynamic behaviour of any 
complex system can be improved through inserting of a 
simple lead or a compensator.  The techniques of 
conventional control theory are conceptually simple and 
require only reasonable amount of computation; the 
input, the output, and error signals are considered 
important in the control theory.  The system designed by 
conventional control theory depends on trial and error 
procedures that will not yield optimal control systems.  On 
the other hand, the system designed by the modern 
control theory particularly by state-space enables 
designing such systems having desired closed-loop poles 
or optimal control systems with respect to given 
performance index.   

However, the design by modern control theory through 
state-space methods requires accurate mathematical 
description of the system dynamics.  The performance 
index is a function whose value indicates how well the 
actual performance of the system matches the desired 
performance.  In most cases, the control vector which is 
in the form of u=-Kx (where u is unconstrained) is chosen 
in such a way that the performance index is minimized or  
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Table 1. Ventilated disc brake rotor and pad specifications. 
 

 
 
 
maximized optimizes the system behaviour.  In this case 
the performance index will be written as follows 

Performance index = ∑
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µ ’s are the desired eigenvalues of the 

error dynamics of the system and the 
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eigenvalues of the error dynamics of the designed  
 
 
For the input parameters (states); 
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And assuming also for the output parameters; 
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Y8 = 153 X=θ
 

Y9 = 174 Xx =
  

Y10 = 
194 X=θ  

 
And by substitution in the equations of motion (2-11), 

the equations can be represented into the form as follows 
in the next equations (23-32); 
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By substitution of the matrices by the data given in 

Table 1 and rearranging the equations of motion (2-11), it 
will lead to the state space method as shown in the next 
form of:  
 

X& = AX + Bu.                       (33) 
Y = CX + Du.           (34) 
 
Where 

Ibrahim and Fatouh, 243 
 
 
 
 

A  is the System 20×20 matrix. 

B is the Input 20×1 matrix. 

C  is the Output 10×20. 
X is the System State 20-vector. 
u is the Input vector. 

 
And by examining the real part of the system eigenvalues 
using MATLAB program, the modes that are unstable 
and likely to produce squeal are revealed.   
 
 
DESIGN THROUGH POLE PLACEMENT  
 

The state space is concerned with three types of 
variables that are involved generally in the dynamic 
systems, which are input variables, output variables, and 
state variables.  Generally, if the dynamic system is linear 
and time invariant the state-space equations will be in the 
form as mentioned in equations 33, and 34.  The state 
feedback control scheme, which is the relationship 
between the output and reference input by comparing 
them and using the difference as a means of control is 
called feedback control system, is given by 
 
u = - K x                                                (35) 
 
Where u is the control signal (control vector). 

 
The system is assumed to be completely state 

controllable.  This means that, the control signal is 

determined as an instantaneous state and the 1×n matrix 
K is called the state feedback gain matrix.  In the closed-
loop control system as in figure (3), the actuating error 
signal, which is the difference between the input signal, 
and the feedback signal is fed to the controller to reduce 
the error and bring the output of the system to a desired 
value. 

 
Figure 3. State-space of the ventilated disc brake with 

feedback control. 
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And by substitution by equation (35) in equation (33) 
gives: 

 

x& (t) = (A-BK).x (t)           (36) 

 
And the solution of this equation will be in the form of 

   

x(t) = 
)( BKA

e
−

. x(0)            (37) 

 
Where x(0) is the initial state caused by external 

disturbances.  The stability and transient response 
characteristics are determined by the eigenvalues of 
matrix A-BK.  The eigenvalues of the matrix (A-BK) are 
called the regulator poles.  If these regulator poles are 
located in the left-half of s plane, then x(t) approaches 
zero while t approaches infinity.  Placing the closed-loop 
poles at the desired location is called a pole placement 
method.  It is possible to transform the state equation 
given by equation (33) into the controllable canonical 
form.  The transformation matrix T given in the form of 

 
T = M.W            (38) 
 
Where M is the controllability matrix and given by 
 
M = [B   AB   A

2
 B   A

3
 B   A

4
 B ………..  A

19
 B]        (39) 

 
And W is given in the form of;  
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(40) 

 
 
Where ai’s are the coefficients of the characteristic 

polynomial equation which is: 
 

ASI −  = S20 + a1 S
19 + a2 S

18 +….+  a19 S + a20       (41) 

 
Where I is the unity matrix and by substitution by I and A 
the coefficients will be calculated from the characteristic 
equation.  And then a new state vector is given by 

 

x = T. $x             (42) 
 
Then, substitution in equation (33), it will be: 

 
 
 
  

$&x = BuTxATT
11 ˆ −− +   (the canonical form)        (43) 

 
Where 
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And also 
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Thus, equation (41) has been transformed to the 
controllable canonical form taken into consideration that 
the system is completely state controllable.  Then chosen 

a set of the desired eigenvalues as µ1, µ2,,µ3 ………….. 

and µ20, and by substitution, then the characteristic 
equation will be in the form 

 

(S - µ1).(S - µ2).(S - µ3)…(S - µ20) = S
20

 + α1 S
19

 + α2 S
18

  

             + ...+α19 S +α20 = 0          (46) 
 

Where, α1 , α2 ….α20 are the coefficients of the desired 
equation and finally, the desired feedback gain matrix 
becomes 

K = [(α20 –a20)  (α19 –a19)…….… (α1-a1)]. T-1        (47) 
 

Where T
-1
 is the inverse of the transformation matrix. 

  
K = [K1 K2 K3 K4 ……………..K20].T

-1
                     (48) 

   

Where  K1  = α20 –a20 

 K2  = α19 –a19 . 

. K20 = α1-a1 



  

 
 
 
. 

 
 

 
Figure 4. Effect of Young’s modulus of brake rotor on 
brakesqueal noise, degree of instability and frequency 
respectively. 
 
 
RESULTS AND DISCUSSIONS 
 
Figure 4 indicates the effect of the Young’s modulus of 
the ventilated rotor on brake squeal noise and degree of 
instability.  The modulus of elasticity of the ventilated 
brake rotor is increased from 50 to 250 GN/m

2
.  It can be 

noted from the figure that as the young’s modulus of the 
rotor increases from 50 to 100 GN/m

2
 the squeal index 

decreases from 148 to 85 and when the young’s modulus 
of the rotor increases from 100 to 250GN/m

2
 the squeal 

index increase from 85 to 105 giving the best value 
between 90 and 130 GN/m

2
.  The maximum squeal index 

of 148 happened with a low modulus of elasticity of 50 
GN/m

2
 and the lower value of squeal index of 85 and 89 

occurred at a rotor Young’s modulus of 90 and 130 
GN/m

2
 respectively.  The maximum frequency of 7250 Hz 

is at rotor young’s modulus of 50 GN/m
2
 decreases to 

2600 Hz at 100 GN/m
2
 and then decreases again to be 

4300 Hz at rotor young’s modulus of 250 GN/m
2
.   

However the maximum instability of 118 (Real Part) is 
predicted at rotor young’s modulus of 50 GN/m

2
 as 

shown clearly in figure 4.  This is to confirm the need for 
a mean value of the rotor young’s modulus to 

Ibrahim and Fatouh, 245 
 
 
 

 

 
Figure 5. Effect of Young’s modulus of friction material on 
brake squeal noise, degree of instability and frequency 
respectively. 

 
 
 
compromise between the performance of the brake and 
the squeal occurrence. 
Figure 5 indicates the effect of the Young’s modulus of 
the friction material on brake squeal noise and degree of 
instability.  The figure shows that as the young’s modulus 
of the friction material increases from 100 MN/m

2 
to 1200 

MN/m
2 

the squeal index increases from 198 to 258 
however, the degree of instability increase from 23 to 70.  
The maximum squeal index 258 occurred at a high 
modulus of elasticity of 1200 MN/m

2
 and the lowest value 

of squeal index of 198 is predicted at modulus of 
elasticity of 100 MN/m

2
.  A frequency of 8500 Hz is 

predicted at a friction material young’s modulus of 100 
MN/m

2 
 and a maximum frequency of 11 kHz reaches at a 

friction material young’s modulus of 1200 MN/m
2 

as 
indicated clearly in figure 4 at a maximum instability of 70 
(Real Part).  This curves confirmed the need to some 
extent to a softer friction material to match between the 
instability of the brake with the frictional behavior of the 
pad. 
When the semi-distance between the clamping bolts of 
the caliper increases from 30 to 70 mm as in figure 6 the 
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Figure 6. Effect of semi-distance between clamping bolts 
of the caliper on brake squeal noise, degree of instability 
and frequency respectively. 

 
 

 
squeal index decreases from 285 to 218 to give the 
optimum value of the squeal noise at semi-distance 
between 50 and 70 mm.  A minimum value of the squeal 
index of 215 is predicted at semi-distance of 60 mm and 
at frequency of 7 kHz as indicated in figure 6.  The 
instability of the system (real part) decreases from 160 to 
130 as the semi-distance between the clamping bolts 
increases.  However, the lowest instability of 130-133 
(real part) is also calculated at 60-70 mm of the semi-
distance between clamping bolts of the caliper.  It is 
normally chosen in most of vehicles in the range of 40-70 
mm to overcome the torque generated on the  brake  due 
to the brake (piston load) effect.  In addition to that the 
increase of this value could affect the size of the caliper 
and hence the weight of the caliper which could lead to 
an added instability. 

Figure 7 shows that as the thickness of the upper or 
lower rings of the ventilated rotor increases between 8-10 
mm the squeal index decreases from 125 to 87 and the  
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Figure 7. Effect of semi-thickness of brake rotor on brake 
squeal noise, degree of instability and frequency 
respectively. 

 
 
 
instability of the system also decreases from 85 to 75.  
When the thickness of the upper or lower of the ventilated 
rotor increases from 10 to 15 mm, the squeal index 
increases from 87 to 102 and the instability will also 
increase from 75 to 130.  Increasing the thickness from 
10 to 15 mm affect the natural frequency of the system to 
decrease from 6590 to 5200 Hz.  The increase in the 
thickness of the upper or lower ring of the rotor above 10 
mm lead to a more squeal and instability of the system 
and this could be due to the effect the rotor thickness on 
the mode generated from the rotor rotation. 

Figure 8 indicates that as the width of the friction 
material increases from 20 to 30 mm the squeal index 
increases from 122 to 124 and the instability decreases 
from 33 to 31 however; the frequency of the system 
increases from 3500 to 4500 Hz.  The squeal index 
decreases from 124 to 82 when the friction material width 
increases from 30 to 60 mm and the instability of the 
system decreases from 31 to 12 indicating the lowest 
instability of the system.  The frequency increases from  
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Figure 8. Effect of friction material width on brake squeal 
noise, degree of instability and frequency respectively. 

 
 

4500 to 9350 Hz when the width of the friction material 
increases from 30 to 60 mm.  The lower squeal index of 
82 is achieved at a friction material width of 60 mm 
however; the higher of squeal index of 124 is achieved at 
friction material width of 30 mm at 4500 Hz and instability 
of 31 (real part) as clear in figure 8. 
It is realized from this theoretical analysis that there are 
some parameters which affect the squeal index and 
degree of instability of the brake system assembly.  
Choosing the appropriate specification of the ventilated 
disc brake components such as mass, young’s modulus, 
stiffness and dimensions of the brake might be useful to 
control the squeal index and instability of the brake 
system.  For example, increasing the distance between 
clamping bolts of the caliper will improve the instability of 
the brake but on the other hand it will affect the caliper 
weight and stiffness.  So, it is recommended to match 
between the different parameters of the brake system to 
make a balance between the squeal index and degree of 
instability and on the other hand the brake performance 
which is the main challenging issues for brake 
manufacturers.   
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The response of the system was obtained by using 
Simulink in the Matlab program.  The figures (9-18) 
indicate the response of the system with time.   It was 
clear that, by applying a feedback control to the system 
state (the system assumed to be state controllable), the 
settling time for all states ranging from 1.5 to 2 seconds is 
determined depending on the desired poles for the 
system.  Also, the gain matrix K is not one for any system  
but depends mainly on the desired closed-loop poles 
locations, which determine the damping of the system 
and also the speed.  By choosing these poles, the system 
has quite acceptable response characteristics. Because 
of the system is 20 × 20 matrix, so it was very difficult to 
determine the poles so, the response characteristics of 
the system has been checked a lot of times with several 
different gain matrix K to give the acceptable response.  
 

 
 

Figure 9. Response of the first state (X1). 
 

 
Figure 10. Response of the second state (X2). 

 
 

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5
Response of the first state

Time (sec)

S
ta

te
 R

e
s

p
o

n
s

e
 (

X
1

)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Response of the second state

Time (sec)

S
ta

te
 R

e
s

p
o

n
s

e
 (

X
2

)



  

248 Glo. Adv. Res. J. Eng. Technol. Innov. 
 
 
 
 
 
 
 

 
Figure 11. Response of the third state (X3). 

 

 
Figure 12. Response of the fourth state (X4). 

 
Figure 13. Response of the fifth state (X5). 

 

 
 
 
 
 
 
 

 
 

 
Figure 14. Response of the sixth state (X6). 

 

 
Figure 15. Response of the seventh state (X7). 

 
Figure 16. Response of the eighth state (X8). 
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Figure 17. Response of the ninth state (X9). 

 
Figure 18. Response of the tenth state (X10). 
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In terms of squeal tendency after applying the feedback 

control of the system, that is shown in the following 
formula:  

∑ 







×=

i

1000TOI

)(s partImaginary 

)(S part Real
i

i  ,         (49)

    
This correlation was used by (Dihua et al., 1998) to 

show the effect of varying each of these parameters on 
the tendency of the squeal as a percentage.  The 
physical meaning of the term (Real part (si)  / Imaginary 
part (si) ) is the damping ratio.  That a mode had 
eigenvalue whose real part was above zero meant the 
system is unstable and the damping value of that mode is 
negative.  Figure 19 shows the squeal tendency against 
the actual value of the used disc brake, at changing only 
one parameter such as the Young’s Modeulus of the 
friction material (FR-YM) the squeal tendency is 82%.  
The tendency of squeal is 75% at using the optimum 
value of the rotor Young’s Modulus (rotor YM).  It shows 
also the squeal tendency at using the optimum values of 
all the previous components with feedback control is 43% 
which is the lowest predicted value.  

The effect of varying all of the used parameters is 
presented in this section.  Plots of the degree of instability 
versus frequency of the system at varying these 
parameters are shown in figure 20.  It shows the system 
instabilities are as less as possible at the ideal predicted, 

it is agreeing with all brake noise studies performed in 
the past as clearly shown in figure 21 which is a typical 
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Figure 19. Effect of changing parameters on the squeal tendency. 
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Figure 20. Typical complex eigenvalue plot. 
 
 

 
 

Figure 21. Typical complex eigenvalue plot, (Liles, 1989). 
 
 
complex eigenvalue plot for (Liles, 1989).  Liles varied 

some parameters in his study seeking to reduce the 
brake squeal but with a different strategy.      
 
 

CONCLUSIONS  
 

It is clear from this study that the analytical 
complex eigenvalue analysis of the ventilated disc 
brake systems is a very important tool to predict the 
generation tendency of brake to squeal which is still a 
very big challenging issue in the car industry and 
particularly the comfort of the passengers.  Different 
design parameters such as the Young’ modulus, 
thickness of the rotor and friction material, and the width 
and weight of the friction material were used in this 
investigation to study their effect on brake squeal in the 
matter of squeal index and degree of instability.  Other 
parameters were also taken into account in studying the 
squeal of the brake such as weight and semi-distance 
between the clamping bolts of the caliper.  The 
following conclusions can be drawn.  

 
 
 
 
 

• In general, the unstable frequencies calculated by 
MATLAB program can help in reducing the squeal 
tendency of the brake system.  

 

• Increasing the Young’s modulus (YM) of the 
ventilated rotor affected the system tendency to 
squeal behaviour and the optimum value of the rotor 
YM was between 90 and 130 GN/m

2
. The lowest 

squeal index of 85 and 89 occurred at a rotor YM of 
90 and 130 GN/m

2 
respectively. However the 

maximum frequency reached during this change 
was 7250 Hz.  

 

• Increasing the Young’s modulus of the friction 
material increased the squeal index of the brake 
system and hence affected the system tendency to 
squeal.   The lowest value of squeal index of 198 
was recorded at a YM of 100 GN/m

2
.  The maximum 

frequency reached was 11 kHz at a maximum 
degree of instability of 70 (Real Part).  The harder 
the friction material, the bias of the brake to squeal.  

 

• When the caliper weight increased from 1 to 3 kg 
the squeal index (SI) decreased from 155 to 85 and 
when it increased from 3 to 5 kg the SI increased 
from 85 to 112.  Increasing the semi-distance 
between the clamping bolts of the caliper decreased 
the SI noise of the brake system assembly and also 
decreased the degree of instability of the brake 
system.   

 

• Increasing or decreasing the semi-distance between 
clamping bolts of the calliper had a great effect on 
the tendency of squeal.  Increasing the semi-
distance from 30 to 70 mm decreased the squeal 
index from 285 to 218.  The optimum semi-distance 
between clamping bolts of the calliper was 70 mm.  
It is recommended to be in the range of 40-70 mm 
because over increase of this value will affect the 
squeal occurrence.   

 

• The thickness of the upper or lower rings of the 
ventilated rotor had a major effect on the brake 
squeal index.  The minimum squeal index of 87 
happened with a rotor thickness 10 mm and 
frequency of 5500 Hz.  When the thickness 
increased above 10 mm the squeal index increased 
rapidly.    

 

• Controlling the output signal of the system by using 
the pole placement give a better response to the 
system depending on the desired poles which 
determines the damping and the speed of the 
response. 

 

• The predicted squeal tendency at varying all the 
studies parameters with feedback control signal  is 
as less as possible to be 43 % compared to other 
single parameters without control signal. 
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NOMENCLATURE 
 
a Rotor fins height 
b 
 

Semi-length of the caliper piston. 
C1 Linear damping between the rotor and the right pad. 

 C2 Linear damping between the rotor and the left pad. 
 C3 Linear damping between the right pad and right caliper 
piston. C4 Linear damping between the left pad and the left caliper 
piston. CD Linear damping of the rotor. 

Cc Linear damping of caliper. 
 C5 Rotary damping of the right pad. 
 C6 Rotary damping of the left pad. 
 C7 Rotary damping of the right caliper piston. 

C8 Rotary damping of the left caliper piston. 

CRD Rotary damping of the rotor. 
 CRC Rotary damping of the caliper. 
 d Semi-thickness of the pad. 
 Ed Young’s modulus of the disc (rotor). 
 Ep Young’s modulus of the pad. 
 F1,F2 Contact forces. 

h Thickness of the upper and lower ring of the ventilated 
rotor. Id, IP,IC Moment of inertia of the rotor, pad and caliper 
respectively. K1 Linear stiffness of right pad. 

K2 Linear stiffness of the left pad. 

K3 Linear stiffness between the right pad and the piston. 

K4 Linear stiffness between the left pad and the piston. 

KD Linear stiffness of the rotor. 
 Kc Linear stiffness of the caliper piston. 
 K5 Rotary stiffness of the right pad. 

K6 Rotary stiffness of the left pad. 

K7 Rotary stiffness of the right caliper piston. 

K8 Rotary stiffness of the left caliper piston. 

KRD Rotary stiffness of the rotor. 

KRC Rotary stiffness of the caliper. 

Md, MP, MC Mass of the disc (rotor), pad and caliper respectively. 

ri, ro Inner and outer radius of the ventilated rotor respectively. 
 xd Displacements of the ventilated rotor. 

x1 Displacements of the right pad. 

x2 Displacements of the left pad. 
 x3 Displacements of the right caliper piston. 
 x4 Displacements of the left caliper piston. 
 µ Coefficient of friction of the friction material. 
 ρ,ρp  Density of the disc (rotor) and the pad respectively. 
 θ1 Angle of rotation of the right pad around y-axis. 
 θ2 Angle of rotation of the left pad around y-axis. 
 θ3 Angle of rotation of the right caliper piston around y-axis. 
 θ4 Angle of rotation of the left caliper piston around y-axis. 
 θd Angle of rotation of the rotor around y-axis. 
  


