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To enhance the reliability of levitation, an especial installation called joint-structure is applied to the 
maglev vehicle. Due to the joint-structure, each suspension point of the maglev vehicle is regulated by 
two independent controllers. When one controller of the suspension point breaks down, the system can 
still be stably suspended by the other controller. However, there is strong force-coupling between the two 
controllers for the joint-structure, which makes the controller designed based on totally separated 
suspension point unsuccessful in application. To realize stable suspension for joint-structure, nonlinear 
decoupling control techniques is introduced to obtain a globally decoupling and linearized model for the 
system. Then the control parameters are designed by pole assignment. Experimental and simulation 
results validate the effectiveness of the proposed control algorithm. 
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INTRODUCTION 
 
Maglev technology has been widely utilized to different 
applications (Joo and Seo 1997), among which maglev 
vehicles rapidly develops since its presentation. To 
enhance the reliability of maglev vehicles, joint-structure is 
introduced, and each joint-structure is regulated by two 
controllers. If one controller breaks down, the other 
controller can still guarantee the stability of the system, 
and the stability of the vehicle accordingly. As the two  
 
 
 
 

*Corresponding Author’s E-mail: liberry@sina.com 

 
 
controllers for the same joint-structure is strongly coupled 
together, decoupling control is the key to the stability of the 
joint-structure. There are quite a lot of decoupling control 
strategies, such as inversion matrix method (Morales et  
al., 2011; Ulbig et al., 2010), relative amplification 
coefficient matching method (Shiskoy FG 1977), diagonal 
dominance approach (Rosebrocok HH 1969), state 
feedback control (Lingling et al., 2012; Zhang et al., 
2010),adaptive decoupling control (Zi-Jiang and Michitaka., 
2001), intelligent decoupling control (Morari M  1994; 
Shaw and Doyle 1997), nonlinear and robust decoupling 
control (eza et al., 2012; Lingling et al., 2011), and so on.  
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Based on the characteristics of the maglev system and the 
experimental setup, this article uses differential geometry 
method to realize the decoupling and the stability of the 
joint-structure. 
 
 
Modeling 
 
Ignoring the elasticity of the guideway and the effect of the 
air-spring on the system performance, the sketch of the 
joint-structure can be presented by Figure 1 (Shen et al., 
2008). 

The definition of the symbols in Figure 1 and the 
symbols which will be used in the following are presented 
as below. 

01 02 0
s s s= =  is the expected suspension gap, 

1
s  

and
2

s  is the measured suspension gap, 
1 2

m m m= =  is 

mass of the suspension object, g  is the Gravity 

acceleration, 
1

F  and 
2

F  is the electromagnetic force, 

1
u  and 

2
u is the control voltage, 

1
i  and 

2
i is the current 

in the coil, 
1 2

N N N= = is the turns of the coil, 

1 2
R R R= =  is the resistance of the coil, 

1 2
A A A= =  is 

the pole area of a single side of the electromagnet, 
1

L  

and 
2

L is the inductance of the coil, 
0

µ  is the 

permeability of vacuum, 
r

k  is the rigid coefficient 

between two sides. 
Suppose the magnetomotive force of the magnetic field 

concentrates in the air gap, the mathematical model of the 
system shown in Figure 1 can be obtained as (Shen et al., 
2008), 
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In (1), the first and the second equations are separately 
the electricity equation and mechanical equation for the 
suspension system on the left, while the third and the 
fourth equations are separately the electricity equation and 
mechanical equation for the suspension system on the 
right. 
 
 
Decoupling control theory 
 
For the convenience of problem analysis, the decoupling 
control theory used in this paper is listed as following 
(XiaoHua and Weibing 1993). 

Definition 1: Let open sets, n
U R⊂ , x U⊂ , and given  

 
 
 
 

a smooth scalar function ( )xλ  and a n -dimention vector 

field ( )f x  in U . Then a new scalar function noted 

( )
f

L xλ  is defined as following. 
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This new function ( )
f

L xλ  is called the lie-algebra of 

( )xλ  along ( )f x . And this function can be calculated 

iteratively. For example, lie-algebra of ( )xλ  sequentially 

along ( )f x  and ( )g x  is, 
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Or lie-algebra of ( )xλ  along ( )f x  for k  times is, 
1

( ) ( ) ( )
k k

f f
L x d L f xλ λ−=     (4) 

Definition 2: For the following multiple inputs and 
multiple outputs system, 

1
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Its relative order 
0

( )
i

r x  is the lie algebra, which 

satisfies, 
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0
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On the basis of the two definitions, two theorems for 
decoupling of nonlinear systems are introduced. First, 
introduce the decoupling matrix nonsingular theorem. 

Theorem 1: If a multiple variables nonlinear system has 

a relative order 
i

r  for 
0

x  to all i m∈ , its decoupling 

matrix ( )A x  shown in (6) is nonsingular at 
0

x . 
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Then introduce theorem 2, which is utilized to explain 

the conditions for decoupling of the system, and how to 

realize decoupling for nonlinear coupled system. 

Theorem 2: If nonlinear system has relative order at 
0

x , 

or saying decoupling matrix ( )A x  is nonsingular at 
0

x , 

then the input-output decoupling problem at 
0

x  can be 

solved by a static state feedback, and one solution is the 
feedback defined by the following matrix, 
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Figure1: Sketch of joint-structure 
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where, 

1

1( ) ( ) ( )m
T

rr

f f mb x L h x L h x =  L    (8) 

If the conditions described in theorem 2 are satisfied, 

decoupling for nonlinear system can be realized by 

equations (7) and (8). The proposed nonlinear decoupling 

method for maglev system can be obtained based on the 

definitions and theorems introduced in this part. 

 
 
Decoupling and linearization of the system 
 
For the convenience of description, introduce the 
following variables transform, 

1 1 2 1 3 1
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x s x y x i
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0
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By the transform in (9), the model (1) can be changed 
as following, 
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Compared with the standard form in (5), it can be 

known: 
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First, the decoupling matrix of the system can be 
calculated according to (6) as, 
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And the other expressions to calculated the control 
variables can also be obtained as, 
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By equation (7), the decoupling control law can be 

calculated as, 
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Up to now, the system has been decoupled. To realize 

linearization of the decoupled system, the following 

variable transform is introduced, 
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It can be obtained by calculation that, 

3 1
z v=& ， 

6 2
z v=&               (29) 

Now, the model for joint-structure has been decoupled 
and linearized, and the state space model after 
decoupling is, 

   z Az Bv= +&                 (30) 

y Cz=                      (31) 

where, 
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From state space matrix (32)~(34), the state space 

model for two separated subsystems can be obtained, 

and the state space for the first subsystem is,  
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0 0 1

T
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[ ]1
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It can be seen from (32)~(34) that, the state matrix of 
the second subsystem is the same to the first one. Thus 
only the controller design for the first subsystem is 
conducted. 
 
 
Control algorithm design 

 

In this section, control algorithm design refers to the 

controller design for subsystem (35)~(37). For the 

convenience of implementation, state feedback control is 

utilized. Suppose the feedback control law is
 
(Ling W 

1990). 

1 1 1 01 2 2 3 3
( )v k z z k z k z= − + +     (38) 

And set the control goals of the system after feedback 

as, overshoot is less than 5%, settling time is 0.1 s . Then 

the dominant poles for the system is calculated as, 

1
20 42.925s j= − +           (39) 

2
20 42.925s j= − −           (40) 

Suppose the third pole of the system is, 

3
200s = −                   (41) 

Then the characteristic equation for the system is, 
3 2

280 19358 671542 0s s s+ + + ＝  (42) 

Substitute feedback control law (38) into the first 

subsystem after linearization (35)~(37), and the 

characteristic equation for the closed loop system can be 

obtained as, 

3 2

3 2 1
0s k s k s k− − − =        (43) 

Comparing the characteristic equation after feedback 

control (43) with the expected characteristic equation (42), 

the control parameters can be chosen as, 

1
671542k = −                (44) 

2
19358k = −                 (45) 

3
280k = −                   (46) 

Substitute (25) and (26) into (38), the control variable for 

the linear system can be calculated as, 
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Figure2: Simulation result of air-gap and current 
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Substitute control law for linear system (47) into the 
expression of control variable (23), the control variable of 
the first subsystem for the joint-structure can be obtained 
as, 
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Similarly, the control variable for the second subsystem 
can be calculated as, 
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Equations (48) and (49) are the control law applied to 
the physical controllers. 
 
 
SIMULATION AND EXPERIMENTS 
 
For one application system, the parameters of the two 
subsystems described in Figure 1 are totally the same. 

0.00545k = , 725m kg=  

0
0.012s m= , 4.44R = Ω  

9.8 /g N kg= , 
r

k = 7
1.236 10× N/ m 

When the power of one controller of the joint-structure is 
suddenly shut down, the simulation results of the other 
controller are shown in Figure 2. 

When the power of one controller of the joint-structure is 
suddenly shut down, the experimental results of the other 
controller are shown in Figure 3. 

From simulation results shown in Figure 2, it can be 
seen that when one controller breaks down, the current 
for the other controller increase rapidly from 18A to 24A, 
and the maximum variety of the suspension gap is 
0.5mm. 

From experimental results shown in Figure 3, it can be 
seen that when one controller breaks down, the current 
for the other controller increase rapidly from 17A to 25A, 
and the maximum variety of the suspension gap is 1.6mm. 
And the suspension gap finally reaches the expected 
value because of the effect of integrator. 
 
 
 
CONCLUSIONS 
 
The nonlinear model for joint-structure of maglev vehicles 
are built in this paper. And the obtained model is a 
multiple-inputs multiple-outputs coupling model. Nonlinear 
state feedback technique is introduced to decouple and 
linearize this model. Then pole assignment is utilized to 
design the controller. The proposed control algorithm is 
simple, and convenient to implement. 
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Figure3: Experiment results of air-gap variety and current 

 
 

The control strategy proposed in this paper is validated 
by both simulation and experiment. Simulation and 
experimental results show that, both the two controllers 
for a single joint-structure can realize stable suspension, 
which means the proposed method is effective for 
decoupling control. And it can be also shown that, when 
one controller breaks down, the other controller can 
realize the stability of the whole joint-structure system by 
itself. Joint-structure function is effectively realized by the 
proposed method, which can improve the safety of 
maglev vehicles. 
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